Difference between revisions of "Neutron TGEM Detector Abdel"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
Haithem's logbook for developing neutron sensitive TGEM detector
+
[[HM_2014]]
  
 +
[[2012]]
  
=Documentation=
+
[[2011]]
  
[[Paste_painting_procedure]]
+
[[2010]]
  
[[TGEM_WasteHandling]]
+
[[2009]]
  
=1/23/09=
+
=Dissertation=
  
== image==
+
;11/01/2015
  
[[Image:Generic_SideView_GEMDetector.jpg]]
+
Measurements
  
1.) Search the web for patent which coats GEM detector with neutron sensitive materials.  I think it is for Thermal neutrons.
 
  
 +
[[File:measurements_1.pdf]]
 +
[[File:measurements_2.pdf]]
 +
[[File:measurements_3.pdf]]
  
Materials of high neutron capture cross section are studied widely, an example is the  following patent
 
[[http://wiki.iac.isu.edu/index.php/Image:Detector.pdf]]
 
  
  
Most of the high neutron capture cross section materials were measured for different neutron energies. A comprehensive work is published in 2000. The project was supported by Korea Atomic Energy Research Institute and Brookhaven National Laboratory [[http://wiki.iac.isu.edu/index.php/Image:Different_cross_sections.pdf]]
+
Conclusion
  
U-235 is the one of the best choices since it has a high neutron fission cross section and a long half life compared to other the other isotopes that may come under choice.
+
[[File:conc.pdf]]
  
A second choice is Th-238 and U-238 which have  fission cross section less than that of U-235 but still good for our experiment.[[http://wiki.iac.isu.edu/index.php/Image:Fission_cross_section_for_U238%2CTh238.pdf]]
+
=alpha calibration=
  
 +
[[File:ch_alphaE.png | 150px]]
  
  
 +
[[File:Raw_data_all.pdf]]
  
  
A boron coated GEM foil is being made by the company below
+
The main peaks are for the following channel numbers,
http://n-cdt.com/
 
  
Another method uses BF3.
+
You need to redo these plots in publication quality with proper axis labels containing units.
  
We are interested in a fissionable material coated onto the copper foils that is thin enough to allow the fission fragments to escape the foil and ionize the gas in the detector.
+
[[File:ch_alphap1.png | 150px]]
 
+
[[File:ch_alphap2.png | 150px]]
 
 
2.) Search for companies which use either sputtering or coating technology to apply the above material to caopper PCboards with hole int them such that the material does not fill up the hole. Hole diameter = ?
 
 
 
The material sputter onto the copper would have thickness on the order of Angstroms.
 
 
 
The TGEM PCboard would have a surface area of 10 cm x 10 cm.
 
 
 
3.) Current neutron efficiency plots for several detector
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_He3_Tube_PND_INL.jpg | 200 px]]
 
 
 
[[Media:NeutronDetectionEfficiency-vs-Energy_Ne-213_BaF.pdf]]
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_BC-408_Scintillator.jpg | 200 px]]
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_GEM_BoronCoatedFoil_Neutron_Efficiency.jpg| 200 px]]
 
 
 
=1/30/09=
 
 
 
1.) Investigate if Thorium Oxide will be a good candidate for the fission chamber. You would use electrolysis to coat a TGEM board.
 
 
 
Ways to make thorium fission chamber
 
 
 
2.) Find reference for THGEM9, this was used to determine optimal THGEM design 2 years ago
 
 
 
GEM-copper plate has dimensions of 3X3cm or 10X10cm with thinkness 5 micrometer copper layers.It has holes with diameter 60-80 micrometer.[http://wiki.iac.isu.edu/images/0/0f/01352098.pdf (From Operation of a triple GEM detector with CsI photocathode in pure BF4)]
 
 
 
=2/6/09=
 
 
 
Thin deposition  ThO2  molecular plating
 
 
 
 
 
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJM-4S03R9J-C&_user=489297&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000023739&_version=1&_urlVersion=0&_userid=489297&md5=cd4314aa4ce529c19369900da39fbbe1
 
 
 
=2/13/09=
 
 
 
Check if the people below can deliver Th coated Al or Cu sheets , coating thickness smaller than 5 micron, the thinner the better.
 
http://www-wnt.gsi.de/tasca/
 
 
 
=2/20/09=
 
 
 
2.5 x 2.5 cm thorium coated TGEM cards coated by ISU chemistry.
 
 
 
chemistry Department cant not do the sputtering for safety purposes, they like to avoid radiation contamination.
 
 
 
Need a mask for the predrilled TGEM cards to prevent Thorium from entering holes
 
 
 
 
 
Radioactive waste procedure if we are allowed to sputter in chemistry.
 
 
 
 
 
Write report describing the process we want to do. 
 
 
 
[[ThoriumPlatingTGEMproposal]]
 
 
 
Radioactiving of Thorium may be a stumbling blog because of waste generated.
 
 
 
If we go for non-radioactive materials look up fission X-sect for [http://www.americanelements.com/bifoil.html Bismuth] and [http://www.americanelements.com/dyfoil.html Dysprosium]
 
 
 
Fission cross section for Bi starts to be effective when the neutron energy is more than the range of interest.
 
 
[[Image:Neutron_induced_fission_cross_section_for_Bi.jpg | 200 px]]
 
 
 
 
 
Dy-isotopes are very good for absorbing neutrons in the range between 0.01- 10 MeV.
 
 
 
[[Image:Dy_neutron_cross_sections.jpg | 200 px]]
 
 
 
[[Media:Zaidi_RadChem_vol93_2005.pdf]]
 
 
 
=2/27/09=
 
 
 
1.) Dysprosium (Dy) makes a lot of gammas and maybe 100 less alphas
 
 
 
 
 
2.) Don't give up trying to make thorium coated materials
 
 
 
try to send e-mail to one of these authors
 
 
 
N. Takahashi, Zeitschrift für Physik A Hadrons and Nuclei
 
Volume 353, Number 1 / March, 1995
 
 
 
3.) Fission cross-section n,f for Tb
 
 
 
=3/13/09=
 
 
 
1.) look for a company that does resistive evaporative coatings
 
 
 
This company sells the machine
 
http://www.lesker.com/newweb/Deposition_Sources/ThermalEvaporationSources_Resistive.cfm
 
 
 
2.)(n,f) X-sect for  Dysprosium (Dy) ?
 
 
 
 
 
3.) Thorium and thorium oxide thin films (19 to 61 nm thick) were RF-sputtered onto mirrors. RF sputtering onto copper plates?
 
 
 
 
 
 
 
The neutron fission cross sections of 92235U and 92238U between 0.3 and 12.5 MeV
 
W W Osterhage et al 1978 J. Phys. G: Nucl. Phys. 4 587-595
 
 
 
http://www.inf.uu.se/Reports/publications.html
 
 
 
Neutron-induced fission cross sections of natPb and 197Au in the 45-180 MeV region,
 
V.P. Eismont, A.V. Prokofiev, A.N. Smirnov, S.M. Soloviev, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg
 
Conference Proc. ADTTA99, 1999, (in press).
 
 
 
Up-to-date status and problems of the experimental nucleon-induced fission cross section data base at intermediate energies,
 
V.P. Eismont, A.V. Prokofiev, A.N. Smirnov, I.V. Ryzhov, G.A. Tutin, H. Cond, K. Elmgren, N. Olsson and P.-U. Renberg,
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Neutron-induced fission cross section ratios of 209Bi and 238U at 75 and 96 MeV,
 
V.P. Eismont, A.V. Kireev, I.V. Ryzhov, S.M. Soloviev, G.A. Tutin, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg,
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Neutron-induced fission fragment angular distribution of 238U at 96 MeV,
 
V.P. Eismont, A.V. Kireev, I.V. Ryzhov, S.M. Soloviev, G.A. Tutin, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Measurements of neutron-induced fission cross sections of heavy nuclei in the intermediate energy region,
 
V.P. Eismont, A.V. Prokofyev, A.N. Smirnov, K. Elmgren, J. Blomgren, H. Condé, J. Nilsson, N. Olsson and E. Ramström,
 
Accelerator-Driven Transmutation Technologies and Applications, Kalmar, ed. H. Condé (Uppsala: Uppsala University, 1997) p 606-612.
 
 
 
=4/2/09=
 
Summury of events through the last two weeks:
 
1- Looking for a neutron fission cross section for Dyspromium.
 
 
2- Looking for other possile elements that can be sued beside our choices for Thorium and Dysprosium.
 
    these elemets should  have a high neutron cross for fission (n,f),(n,gamma),(n,p) or (n,alpha).
 
 
 
3- Using Neutrons cross sections (by D. Hughes and R. Schwartz, 2nd edition, 1957) as comphensive reference for our choice.
 
 
 
'''
 
== Comparison between Thorium and Dysprosium ==
 
.'''
 
 
 
Thorium: chacterized by relatively high neutron fission cross for both of its isotopes (Th-232 nad Th-230) compared to the stable elements but it is one of low fission cross sections compared to radioctive actinides. A lot of efforts are spent even in coating or finding the appropriate place or group to do that, since most of people are totally disencouraged to coat radioctive elements.
 
 
 
[[Image: Table_of_different_neutron_fission_cross_11MeV_-_13_MeV.jpg| 300 px]]  [[Image:Th-232_fission_cross_section.jpg | 300 px]]
 
 
 
 
 
Dysprosium: radioactively stable,it has 5 isotopes Dy-160, 161, 162, 163 and 164.  It is one of the best elements for detecting the neutrons because of  high neutron capture cross section in the energy range of interest.
 
 
 
[[Image: total and capture neutron cross sections for dy- 160 until 20 mev.jpg  | 200 px]] [[Image:total and capture neutron cross sections for dy- 161 until 20 mev.jpg | 200 px]][[Image:total and capture neutron cross sections for dy- 162 until 20 mev.jpg  | 200 px]]  [[Image:total and capture neutron cross sections for dy- 163 until 20 mev.jpg  | 200 px]][[Image: total and capture neutron cross sections for dy- 164 until 20 mev.jpg  | 200 px]]
 
 
 
Also dysprosium pulls out alpha paticles (σ(n,α)= 3.6 mb at 14.2 MeV).
 
 
 
== Other Possible Elements ==
 
.'''
 
Generally,the highest values for neutron cross sections (σ(n,f), σ(n,p), σ(n,γ) and σ(n,α)) are for radioactive isotopes, which are not desirable for coating. Fortunately, there are non- radioactive elements have a relatively high neutron cross sections, for example:
 
 
 
σ(n,γ) at 0.025 MeV (in mb): Gd-158(710(70)),  Sm-152 (670(100)),  Br-81 (550(55)),  Sm-154 (530(70)),  Ce-142 (425(45)),
 
 
 
Hf-180(440(70)),  Ru-96(320(60)),  Ru-102 (390(40)),  W-186 (300(40)),  Zr-96 (240(40)),  Hg-202(57(13))
 
 
 
 
 
σ(n,γ) at 1 MeV (in mb): Re-185(180),  (390(40)),  Ru-102 (30), Ru-104 (31),  Hg-204(100), Br-81 (17)
 
 
 
 
 
σ(n,γ) at 14.5 MeV (in mb):  Gd-160 (19(5)),  Zr-96 (<4),
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Element || X-sect (mb)
+
|channel Number|| Energy Upper limit (MeV)|| Energy lower limit (MeV)|| average energy (MeV)|| Notes
|-
 
| Re-185 ||180
 
 
|-
 
|-
| Ru-102 ||390
+
| 4828 || 4.90 || 4.79 || 4.85 +_ 0.02 || 
 
|-
 
|-
 
+
| 4869 || 4.94 || 4.83 || 4.88 +_ 0.02 ||
 
 
 
|}
 
|}
  
=4/3/09=
+
=Gamma Spectrum for U-233=
 
 
1.) Derive equations for voltages at each GEM stage and the net current for our voltage network and check them with measured values for the 4kV version of the voltage network.
 
 
 
2.) Reference [J.C. hadler, Radiation Measurements Vol 43 (2008) pf S334-S336] says
 
 
 
# R = 14 \mu m = mean range of fission fragment6s in U_3 O_8
 
#R= 12 um for UO_3
 
#0.1 um thickness U( Th) will reduce mean length of fission tracks by 2%
 
 
 
3.) Plot N -vs- d using Equation 2 of Reference [J.C. hadler, Radiation Measurements Vol 43 (2008) pf S334
 
The number of particles per unit area is given by the equation:
 
  <math>N = 2/d *(1 - d/12.07) + 1/12.07 </math>
 
d : the thickness in (um)
 
 
 
The range of the fragments in the emulsion is 12.07 um
 
[[Image:fragment vs thickness (Hudler).jpg]]
 
 
 
 
 
=4/17/09=
 
A call conference with Dr.Wolfe, As result, the following is considered as next step for the project:
 
 
 
1- Check the melting temperature that a PC boeard can hold ( the size of the chamber can hold the 10 X 10 PC board ).
 
   
 
    The experiment is done, the temperature in average was aroubd 305oC, the PC board can hold that temperature easily,
 
the PC board was just burned since the medium around is O2, but there is one thing I want ot be sure of, if the PC board has a very light layer of certain material covers its surface and can't hold up that temeperature?
 
   
 
  An experiment is done today (4/30/09) to check the PC board behavior at 350oC.
 
  A peace of copper sticked by normal used glue.
 
[[Image:PC-board 1.jpg| 200 px]] 
 
    PC boeard can't hold up the temperature 350oC.
 
[[Image:PC board_3.jpg| 200 px]]
 
 
 
 
 
 
 
 
 
2- Checking from a vender for chunk bulk ThF4 with size min. 30 cc.
 
 
 
3- Checking the thermal properties of ThF4 specially the melting point and if Thorium is adhere to copper in that temperature.
 
 
 
4- A mask should be prepared from stainless steal (Al is not preferable),inaddtion to thinking of drilling process and who   
 
    is going to do it.
 
 
 
 
 
Laser machining can cut 1" stainless steel sheets
 
 
 
5- Dr. Forest is going to send the email after collecting all the information needed to Dr. Wolfe.
 
 
 
Coaing process is going to be by electron beam, thorium should be heated to 1750 C. (the melting point for pure Th).
 
 
 
 
 
Until this point the uniformity of the surface is not an important factor, but I think it would be important whenever we start thinking of the track and the direction for Th fission fragments.
 
 
 
=4/23/09=
 
 
 
1- Check the melting temperature that a PC board can hold ( the size of the chamber can hold the 10 X 10 PC board ).
 
 
 
Basically FR-4, FR-1, CEM-1 or CEM-3 PCB are made of polytetrafluoroethylene which has
 
(327 °C (620.6 °F))as a melting point.
 
 
 
The experiment is done, the temperature in average was around 305 °C, the PC board can hold that temperature easily,the PC board was just burned since the medium contains O2, but there is one thing I want to be sure of, if the PC board has a very light layer of certain material covers its surface?
 
 
 
 
 
 
2- Checking from a vender for chunk bulk ThF4 with size min. 30 cc.
 
  
http://www.element-collection.com/RGB_Elements_OCT04_rev05.pdf
+
[[File:gamma_spect.png | 150px]]
  Element-collection sells thorium with 190$/gram !
 
  
3- Will Thorium adhere to copper
+
= Last runs=
  
Thorium flouride is used for optical purposes, according the technical applications they have a number of recommendations related to sputtering by E-beam, and other materials that helps in thorium flouride adhesion.[http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078]
 
 
Looks there is a little change, Dr. Forest is going to check a vendor for U-238, which has a better fission cross section (3 times higher compared to Th-232),in addition to , the high price for Th-232 and risk of having flakes after sputtering, Throium by itself does not adhere with the surfaces unless other materials are used through the sputtering process (as methioned in the case of coating glass with thorium fluoride).
 
 
=5/1/09=
 
 
1.)  Results from PCboard heating test: Board melts at 350 but not 310 degrees Celcius (Documents suggest 327 as the melting point.)
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Before heating to 350<math>^o C</math> ||After Heating to 350<math>^o C</math>
+
|Run Number||start || end || Time (min) || Shutter || Source ||  Count rate (counts/min) || Notes
 
|-
 
|-
| [[Image:PC-board 2.jpg | 200 px]] ||[[Image:PC board_6.jpg| 200 px]]
+
|9005 || 05/15 15:00 || 05/16 10:55 || || open || off || 50 ||  
 
|-
 
|-
| Before heating to 298<math>^o C</math> ||After Heating to 298 <math>^o C</math>
+
|9006 || 05/16 10:57 || 05/17 22:18  || || open || on ||  48||
 
|-
 
|-
| [[Image:PC board before 298.jpg | 200 px]] ||[[Image:PC-board  at 298.jpg| 200 px]]
+
|9007 || 05/17 22:23 ||  05/18 19:20 || || closed || on || 30 ||
|}
+
|-
 
+
|9008 || 05/18 21:46 || 05/19 19:59 || || closed || off || 30 || high beta effect
The experiment is done on the PC-board, it was heated for an hour under 298°C.
+
|-
The result is shown by the second photo, looks that PC-board should be replaced by another material that can hold this temeperature for longer time.
+
|9010 || 05/21 23:23 || 05/22 10:00 || || closed || off || 30 || high beta effect
 
+
|-
2.) Oak Ridge will give us 1 kg of metal Th-232. We pay for shipping and we need to do rad licenses. Dr. Forest e-mail Dr. Brey and the paper work is beginning.
+
|9023 || 05/26 13:06 || 05/26 13:17|| 11 || open || off || 87 || GEM2.9kV 3.6kV
 
 
Contact info
 
 
 
Lloyd J. Jollay
 
Manager Nuclear Technology and Nonproliferation
 
Y-12 National Security Complex
 
P.O. Box 2009
 
Oak Ridge, TN 37831-8112
 
Office: 865-241-1872
 
Fax: 865-574-5169
 
Pager: 865-873-9146
 
Mobile: 865-206-9663
 
 
 
3.) Laser cutting can do up to 1" thick stainless steel sheets, we can make a mask! Need to learn CAD to create a drawing of the mask which will be uploaded to the laser cutting machine.  make tolerances around 500 micron (1/2 mm).
 
Insert picture of our GEM PC board with a table of distances.
 
 
 
4.) Meting Point for U-238 =?
 
 
 
Melting Point: 1408 K (1135°C or 2075°F). Boiling Point: 4404 K (4131°C or 7468°F)
 
 
 
=5/8/09=
 
 
 
1.) It appears the FR-7 melts at 220 celsius so we may not be able to coat copper clad FR4 with U-28 or Th-232. This means we will most likely coat a copper sheet which is attached to a frame for tension and then laminate FR4 after we have coated the copper sheet with U-28 or The-232.
 
 
 
Determine melting point of our current PC boards.
 
 
 
Melting point for the PC board is 260 degrees Celsius,within this degree  a change took place in the shape of the board which will make the possibility to use it for sputtering process is very little, the color of the PC-board starts to change at 200 degrees Celsius.
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| 200 <math>^o C</math> ||210 <math>^o C</math> || 260 <math>^o C</math>
+
|9024 || 05/26 13:20 || 05/26 13:27|| 7 || closed || off || 26 ||  GEM2.8kV 3.5kV (beta effect decreased)
 
|-
 
|-
| [[Image: PC_200.jpg | 200 px]]|| [[Image:PC board at 210 degrees.jpg | 200 px]] ||[[Image:PC _ 260.jpg| 200 px]], [[Image:PC _ 260 top.jpg| 200 px]]
+
|9032 || 06/13 12:35 || 06/13 12:45|| 10 || open || off || 87 ||  GEM2.8kV 3.5kV (ISU power shutdown)
|}
 
 
 
2.) The distance between holes in the TGEM appear to be 1mm. A laser can cut through 1" of stainless steel. What accuracy can the laser have when cutting through the thinnest available SS we want to use for a mask.
 
 
 
  Find laser resolution (200 microns?)
 
 
 
The following company [http://http://www.mlpc.com/laser_micromachining.php?_kk=laser%20micro%20cutting&_kt=fa43fe73-ceb7-4705-9bf9-1e815ddaaf69&gclid=CKiRwd_2z5oCFRMUagodAHZK2g] can reach to a tolerance of 10 micrometer if the thickness of the plate is bigger than 300 micrometer, in our case the thickness of copper foil is 45 micrometer, and the hole is diameter is 1 mm, a tolerance of 200 micrometer is going to be good for the drilling the holes and doing the mask. an email from the company will confirm the expectations.
 
 
 
  Determine thinnest SS mask
 
 
 
still waiting for the email.
 
 
 
 
 
3.) HV distribution chain calculation.  Low voltage version?
 
 
 
Order resistors based on power calculation, work with Tumuna on the order.
 
 
 
4.) Install GEANT4 in your Inca account, Start GEANT4 Fission model (CHIPS or GEISHA).
 
 
 
=5/15/09=
 
 
 
1.) Insert picture of PCboard at 220 and 260 and denote time spent at that temperature.
 
 
 
 
 
2.) The distance between holes in the TGEM appear to be 1mm and are staggered between rows.  A laser can cut through 1" of stainless steel.  We would like a laser with position accuracy to at least 100 microns (4 mils :1000 mils = 1 in)  which can drill a hole whose diameter is accurate to 4 mils.  What accuracy can the laser have when cutting through the thinnest available SS we want to use for a mask.
 
 
 
  Find laser resolution (10 microns?)
 
 
 
  Determine thinnest SS mask
 
 
 
 
 
 
 
3.) HV distribution chain calculation.  Low voltage version?
 
 
 
Look at the following diagram :[[Media:GEM_HV_circuit.ps]] 
 
 
 
<math> I = I_{11} + I_1^{\prime}</math>
 
 
 
 
 
<math>I_{11} \times R_8 - I_1^{\prime} R_2 = 0 </math>
 
 
 
 
 
<math> I_{11} \times R_3 + I_2^{\prime} R_4 = 0</math>
 
 
 
 
 
<math>  I_{11}= I_{22}  + I_2^{\prime}</math>
 
 
 
 
 
 
 
<math> -I_2^{\prime} \times R_4 + I_{22} \times \frac{R_9 \times R_{10}}{ R_9 + R_{10}} = 0 </math>
 
 
 
 
 
<math>I_{22} \times R_{11} - I_3^{\prime} R_{12} = 0 </math>
 
 
 
 
 
<math>  I_{22}= I_{33}  + I_3{\prime}</math>
 
 
 
 
 
<math>- I_3^{\prime} R_{12} + I_{33} \times \frac{R_{13} \times R_5}{ R_{13} + R_5}  = 0 </math>
 
 
 
 
 
<math> V_{in} - I_{11} \times (R_8 +R_3) - I_{22}\times\left( \frac{R_{10} \times R_9}{ R_{10} + R_9} +R_{11} \right) -  I_{33} \times\left ( \frac{R_{13} \times R_5}{ R_{13} + R_5} +R_7 \right )= 0 </math>
 
 
 
 
 
 
 
<center>[[Image:GEM_HV_Dist_Net.jpg | 200px]]</center>
 
 
 
Order resistors based on power calculation, work with Tumuna on the order
 
 
 
4.)GEANT4 is installed in Inca account, ExampleN02 was compiled and runs.
 
 
 
 
 
 
 
Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
=5/22/09=
 
 
 
1.) heat PC board for 3 hours at 210C
 
 
 
 
 
2.) Determine laser resolution for a 45 micron thick copper sheet
 
 
 
 
 
 
 
3.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
 
4.) Going to order 25 resisters of each Ohm setting.  Prepare a HV board for stuffing and assemble after resistors arrive.
 
 
 
5.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
=6/9/09=
 
 
 
 
 
1.) Write a brief description ( 2 paragraphs) of the experimental objectives and methods with justification for the specific radionuclides and quantities.
 
 
 
We propose constructing a fission chamber which contains copper PCboards coated with U-238 and Th-232.  Our goal is to construct a fast neutron detector.  A safe in the LDS will serve as a repository for the U-238 and Th-232 bulk material.  A small fraction of the material (100 g) will be sent to a collaborator at another University who will use Electron Beam-Physical Vapor Deposition to coat a 10 cm x 10 cm PCboard with U-28 or Th-232.  The radioactive material will be a 5 micron or less coating attached to the PCboard.  The PCboard will reside inside a gaseous detector.  The quantities of each bulk material are given in the table below.  Oak Ridge national Lab will supply 1kg of Th-232 at no cost.  Unfortunately, 1kg is the smallest size available. 
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| U-238  || Th-232
+
|9033 || 06/13 12:35 || 06/13 12:45|| 10 || closed || off || 26 || GEM2.8kV 3.5kV
 
|-
 
|-
| 200 g || 1000 g 
+
|9034 || 06/15 20:55 || 06/15 21:05|| 10 || open || off || 45 ||  GEM2.8kV 3.5kV
|}
 
 
 
U-238 has a atomic number 92, and mass number of  238.050785, it is mainly an alpha emitter.  Th-232 has a atomic number 90, and mass number of 232.038051 , it is also an alpha emitter.
 
 
 
 
 
2) Describe the facility used to store the materials, diagram of room layout.  location of safe.
 
 
 
A floorplan of the Laboratory for Detector Science is shown below.
 
 
 
[[Media:LDS dimension Model(1).pdf ]]
 
 
 
The LDS has 2 safes available for storing radioactive materials.  A solid steel safe manufactured by  Bunker Hill with the outer dimensions  of (25 cm)H X (35 cm) W X (25 cm) D and inner dimensions of  9-1/2” H X 13-1/2” W X 9-5/8”  is controlled by a digital lock.  The safe itself weighs 15 kg and is mounted to a wall in the LDS. A second iron safe, manufacturer unkown, uses a combination lock and has the outer dimensions of 62 H X57 W X 45 (cm)D.
 
 
 
 
 
 
 
 
 
3.) Describe radiation survey instruments available for monitoring.
 
 
 
We ask that the TSO provide us with all necessary monitoring devices.
 
 
 
4.) Description and estimate of radioactive waste being generated.
 
 
 
We do not expect to generate radioactive was.
 
 
 
=6/12/09=
 
 
 
1.) heat PC board for 3 hours at 210C
 
 
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
210 <math>^o C</math>
+
|9035 || 06/15 21:06 || 06/13 21:16|| 10 || closed || off || 27 |GEM2.8kV 3.5kV
 
|-
 
|-
|| [[Image:PC board at 210 degrees.jpg | 200 px]]
+
|9036 || 06/17 14:48 || 06/17 14:58|| 10 || closed || off || 28 || GEM2.8kV 3.5kV
|}
 
 
 
 
 
2.) Determine laser resolution for a 45 micron thick copper sheet
 
 
 
50 micron
 
 
 
 
 
3.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
 
resisters have arrived currently soldering ready to measure HVs (remember, Digital voltmeter has 1 kV max)
 
 
 
 
 
4.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
=6/19/09=
 
 
 
1.) Th-232 mask due July 1,2009
 
 
 
 
 
2.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
 
[[Image:Abdel_GEM_HV_distrib_6-19-09.png | 200 px]]
 
 
 
 
 
 
 
 
 
<math> V_{in} - I \times (R_8 +R_3) - I \times \left( \frac{R_{10} \times R_9}{ R_{10} + R_9} +R_{11} \right) - I \times \left ( \frac{R_{13} \times R_5}{ R_{13} + R_5} +R_7 \right )= 0 </math>
 
 
 
 
 
 
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
=6/30/09=
 
 
 
1.) Th-232 mask due July 1,2009
 
 
 
change design to be a series of lines covering the holes.  Calculate the % area of the foil to be covered with Th-232.
 
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
 
Input Voltage = 1000 V
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Current  || measured  || calculated
+
|9037 || 06/17 14:59 || 06/17 14:09|| 10 || open || off || 28 || GEM2.8kV 3.5kV
 
|-
 
|-
|  (uA)  ||  262.3    ||  220.7 
 
 
|}
 
|}
  
 +
The charge spectrum returned to were it was before the neutron exposure after 29 days for closed shutter.
  
 +
=QDC TDC PS-ADC setup=
  
 +
;Peak sensing gate
  
From the figure above:
+
[[File: GEM_PS_gate.png | 300 px]]
 
 
<math> R_{T11} =  R_8  </math>
 
 
 
 
 
<math> R_{T22} = \left( \frac{R_{10} \times R_9}{ R_{10} + R_9} \right )</math>
 
 
 
 
 
<math> R_{T33} = \left( \frac{R_{13} \times R_5}{ R_{13} + R_5} \right )</math>
 
 
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
Contact F.W. Jones, TRIUMF, 03-DEC-96 and ask for suggestion on simulating Th-232 (n,f) in GEANT4.  Which model to get X-sections right?
 
 
 
F.W. Jones sent by July, 7:
 
 
 
G4LFission is based on the GHEISHA model of fission,
 
by H. Fesefeldt, from GEANT 3.21.
 
 
 
It is a parameterized model using empirical formulas,
 
e.g. the one for average number of neutrons.
 
The photofission part of the model is not implemented.
 
 
 
My role in this was mainly as a code translator, so
 
unfortunately I can't give you an expert opinion
 
on it.  I would suggest that for your study, use one of
 
the prepared physics lists which will include the
 
optimal treatments of fission for various applications.
 
 
 
See e.g. http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
 
 
 
If you are in doubt about choosing a physics list, I would strongly
 
recommend that you post a query on the Geant4 forums, describing
 
your application and what you wish to study (indicate if you wish
 
to study nuclear fragments or other yields).
 
 
 
The forum for hadronic physics is here:
 
 
 
http://hypernews.slac.stanford.edu/HyperNews/geant4/get/hadronprocess.html
 
 
 
This forum is monitored by experts who will be able to provide a
 
more definitive answer.
 
 
 
Best regards,
 
Fred Jones
 
 
 
= 7/10/09 =
 
1.) Th-232 mask due July 1,2009
 
 
 
Making the lines as wide as the holes consumes 50% of the surface area.
 
 
 
A 0.45 mm diameter circle covering the holes and connected by 0.3 mm thick lines will increase the area available for fissionable material to 64%.
 
 
 
Decision is to create a series of lines 0.4 mm thick to cover the holes and connect them with support material.
 
 
 
We need a design of lines 0.4 mm thick covering the holes and connecting them.  The distance between line should be 0.3 mm and have a tolerance of  0.1 mm.
 
This will be an effective area of 3/7 = 42% for fission material.
 
 
 
 
 
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
 
Redo with actual measured resistance values
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
 
 
Install model suggested by Forum below for U-232:
 
 
 
 
 
http://hypernews.slac.stanford.edu/HyperNews/geant4/get/hadronprocess.html
 
 
 
add the functions below to the physicslist.  these are the fission models
 
 
 
G4HadronFissionProcess* Fission = new G4HadronFissionProcess();
 
G4ParaFissionModel* FissionModel = new G4ParaFissionModel();
 
thenFission->RegisterMe(FissionModel);
 
pManager->AddDiscreteProcess(Fission);
 
 
 
install this into detector construction
 
 
 
<pre>
 
 
 
// U-235
 
  a = 235.01*g/mole;
 
  density = 19.050*g/cm3;
 
  U235 = new G4Material(name="U235", z= 92., a, density);
 
  
</pre>
+
;QDC gate
  
 +
[[File: GEM_QDC_gate.png | 300 px]]
  
  
4.) Resistive Coating links
+
;TDC start
  
http://www.ellsworth.com/conformal.html?tab=Products
+
[[File: TDC_pulser.png | 300 px]]
  
=7/15/09=
 
  
Got LLNL fission model with reference below
+
;TDC STOP
  
http://nuclear.llnl.gov/simulation/fission_usermanual.pdf
+
[[File: TDC_GEM.png | 300 px]]
  
 +
;QDC shows a difference
  
Created FissLib model in ExN02 using Uranium target.
+
[[File: QDC_source_on_off_7724_7726.png | 300 px]]
  
 +
=Measurements of the frequently used gas mixture 90/10 Ar/CO2 for the second peak =
  
The command below will turn on tracking printout
+
;Changes from the former set up
  
/tracking/verbose 1
+
# Using the eG&G timing filter amp. 474 instead of the spectroscopic amp. to amplify the input for the peak sensing ADC.
 +
#Gate of a width of 4us has been delyed to track the second peak, as a result part of output spectrum is lost except for the delayed part within the gate width as shown in the figures below:
  
The command below will send another neutron projectil in
+
;Lost
/run/beamOn 1
 
  
=7/24/09=
+
[[File: PS_l1.png | 300 px]]
  
1.) Th-232 mask due July 1,2009
+
;Detected
  
[[File:Th-232_Mask_7-24-09.pdf]]
 
  
Add alignment holes.
+
[[File: PS_d1.png | 300 px]][[File: PS_d2.png | 300 px]]
  
[[File:copper_foil_04_straight_lines_with_adjustment.pdf]]
 
  
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
Redo with actual measured resistance values
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|Voltage (V) || measured  || calculated
+
|Run Number||Date || start || end || Time (min) || Shutter || Source || Count rate (counts/min) || Notes
|-
 
| <math> R_{T11} </math>|| 165  ||  126.6
 
 
|-
 
|-
|<math> R_{T22} </math> || 98.6  || 103.4
+
|7435 || 08/24/14|| 19:30:48 || 19:55:32 || || open || on || 400 || a peak is noticed on channel 400
 
|-
 
|-
| <math> R_{T33} </math>|| 81.5    || 95.9
+
|7436 || 08/24/14|| 19:59:05 || 20:40:11 || || open || off || 216 || the peak disappeared
|}
 
 
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
 
 
 
 
trying to simulate the experiment by geant4, once when the source is thorium and another when the source is uranium by hitting the target every time with 10^7 neutrons of energy of 7.5 MeV.
 
 
 
The result :
 
 
 
Until now I did not see any effect of fission processes, the thickness of the target is 0.01 cm. then I should make the target thinner.
 
 
 
I read the paper uploaded to the wiki, the editor explained that G4NDL3.10 has limaitions, under geant4 it just has data for U 7 isotopes.
 
 
 
Mostly all what I got in my simulation is gamma, pair production and Compton scattering. 
 
 
 
I did  search to see who is interested in tracking fission fragment:
 
I found the following contact with "Michael Heffner" in Lawrence Livermore National Lab. who was engaged in tracking hte fission fragment for Cf-239 but unfortunately I did not get a reply for my email:
 
 
 
I am working on tracking the fission fragment of thorium-232 and uranium-238, part of my work is to use Geant4 for experiment simulations, I read about your work in tracking the fission fragment of Pu-239 (n,f).
 
which model did you use for fission fragment tracking?
 
 
 
the link for their work is :  
 
 
 
http://74.125.155.132/searchq=cache:SrXOI60kSs0J:www.nscl.msu.edu/~bickley/TPCWorkshop/Presentations/03_Heffner.pdf+tracking+fission+fragment+"Michael+Heffner"&cd=1&hl=en&ct=clnk&gl=us
 
 
 
Use Uranium target
 
  use
 
http://wiki.iac.isu.edu/index.php/Simulations_of_Particle_Interactions_with_Matter#Changing_the_Random_number_seed_in_GEANT4
 
to save random number generator state for a fission event.
 
decrease target thickness until you see fission fragments
 
 
 
ExampleN02Detector construction.cc is edited, experiment simulated with 6.5 MeV neutron beam but different target thicknesses, the result is summarized as the following :
 
 
 
= 7/27/09=
 
 
 
Zoom into interaction point to see all the particles (gamma and neutron). 
 
You will need to do this to see fission fragments anyway.
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Beam Energy (MeV)  || Target thickness (um)  || the first fission event random number || image
+
|7438 || 08/24/14|| 19:59:05 || 10:00:00 || || open || on || 0.0146 || triple coin., high noise, max. is ch 355
 
|-
 
|-
|   6.5              ||     100    ||     7458    ||  [[Image: n_detector_6.5MeV_1mm.jpeg | 100 px]]
+
|7444 || 08/25/14|| 21:17:25 ||  21:20:35|| || open || on || 230 || gate delay 700 ns, peak disappeared [[File: gate delay700ns.png | 300 px]]
 
|-
 
|-
|   6.5              ||   10      ||     17475    ||
+
|7446 || 08/25/14|| 21:29:51|| 21:38:55 || || open || off || 185 || does not count for P_B. peak disappeared
 
|-
 
|-
|  6.5              ||    2      ||    285078    || [[Image: n_detector_6.5MeV_2um.jpeg | 100 px]] 
 
|-
 
|  6.5              ||    1      ||    2,691,504  || [[Image: n_detector_6.5MeV_1um.jpeg | 100 px]]
 
|}
 
  
We can track the ions coming out of the fission process by defining the adding G4DiffuseElastic.cc to our physics list.
 
  
http://docs.google.com/gview?a=v&q=cache:hsRwLvrsdZMJ:www.oro.doe.gov/riaseb/wrkshop2003/papers/p-2-0-6.pdf+geant4+and+"+tracking+ions"+code&hl=en&gl=us&pli=1
 
 
=8/3/09=
 
 
1.) Th-232 mask due July 1,2009
 
 
[[File:Th-232_Mask_7-24-09.pdf]]
 
 
Add alignment holes.
 
 
[[File:copper_foil_04_straight_lines_with_adjustment.pdf]]
 
 
 
Need to calculate gravitation deflection of stainless steel strip that is 0.4 mm and 11 cm long wide as a function of its thickness.
 
 
Plot mask thickness -vs- deflection due to gravity.
 
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
What is uncertainty in the current used to calculate the expected voltage drop.
 
 
{| border="1" cellpadding="4"
 
|-
 
|Voltage (V) || measured  || calculated
 
|-
 
| <math> R_{T11} </math>|| 165  ||  126.6
 
|-
 
|<math> R_{T22} </math> ||  98.6  ||  103.4
 
|-
 
| <math> R_{T33} </math>||  81.5    ||  95.9
 
 
|}
 
|}
  
  
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
+
[[File: shutteropen_sourceon_off.png | 300 px]]
 
 
 
 
;Goal
 
:Simulate the fission process using an incident neutron of energy 6.5 MeV and a layer of U-238 using Geant4.
 
 
 
 
 
;Status
 
: We are now seeing fission events for 1 micron thick sheets of U-238.
 
:We do not see fission fragments yet
 
 
 
 
 
Suggestions:
 
 
 
1.) Move target to center of world and zoom in
 
 
 
2.) Add particle definition of ions
 
 
 
3.) add G4DiffuseElastic.cc process for charged pariticles > 0
 
 
 
=8/10/09=
 
 
 
1.)Need to calculate gravitation deflection of stainless steel strip that is 0.4 mm and 14 cm long wide as a function of its thickness.
 
 
 
Plot mask thickness -vs- deflection due to gravity.
 
 
 
Maximum deflection  of plate  of a uniform load, is given by the following formula:[http://www.amazon.com/Structural-Analysis-7th-Russell-Hibbeler/dp/0136020607]
 
 
 
<math> \Delta =  \frac{ 5 w L^4}{384 E I} </math>    ;        <math> I =  \frac{b h^3}{12} </math>
 
  
where:
+
= unknown gas mixed bottle measurements=
  
<math>\Delta</math> : Deflection (m)
 
  
w : The weight of the plate per unit length (N/m)
+
; Updates
  
b : The shorter side of the plate (m) (b = 0.4 mm)
+
Changing the leading edge disc. to understand the Peak sensing and explain the cut int he peak sensing graph.
  
E : Young Modulus (N/m^2) (for stainless steel = 200 GN/m^2)
+
Measuring the noise. by starting by low signal rate to distinguish the signal from the noise.
  
h : The thickness of the plate (m)
+
; Channels and signals
  
L : The length of the plate (m) (d = 0.14 m)
 
 
I : The moment of inertia (m^4)
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| t (m)        || y_{max} (m)
+
|device|| ch || input source
 
|-
 
|-
|1.00 10^-7 || 0.00003150
+
| ADC || 5 || GEM's trigout
|-
 
|2.00 *10^-7 || 0.00000394
 
 
|-
 
|-
|3.00 *10^-7 || 0.00000117
+
| Peak sensing 7|| 15 ||  GEM's trigout
 
|-
 
|-
|4.00 *10^-7 || 0.00000049
+
| Peak sensing 5 || 11 ||  PMT Left
 
|-
 
|-
|5.00 *10^-7 || 0.00000025
+
| Peak sensing 8|| 17 ||  PMT right
 
|-
 
|-
|1.00 *10^-6 || 0.000000032
+
|PS translator ||
 
|-
 
|-
|2.00 *10^-6 || 0.000000004
+
|TDC || 25 || PMT L
|-
 
|}
 
 
 
   
 
  
 
2.) What is uncertainty in the current used to calculate the expected voltage drop.
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|                       || measured (Mohm)|| theoretical value (Mohm)|| Voltage (V)measured  || Voltage (V) calculated
+
|TDC|| 27 || GEM's trigout
 
|-
 
|-
| <math> R_{T11} </math> ||     0.56      <math>\pm</math>  0.01    ||   0.55                  || 165 <math>\pm</math> 1  ||  126.6
+
| TDC || 29 || PMT R
 
|-
 
|-
|<math> R_{T22} </math>  ||     0.47            ||       0.46            ||  98.6  ||  103.4
+
| TDC || 31 (Stopper) || triple coincidence (OR Mode)
 
|-
 
|-
| <math> R_{T33} </math> ||    0.42            ||          0.41      ||  81.5    ||  95.9
+
|CAEN N638
|-
 
| <math> R_{T33} </math>  ||      0.56            ||        0.55                || 244            ||  220
 
|-
 
| <math> R_{T33} </math>  ||      0.47        ||        0.46                ||        200      ||  220
 
|-
 
| <math> R_{T33} </math>  ||        0.42    ||            0.41            ||        212      ||    220
 
|-
 
|}
 
 
 
the uncertainty in measuring the voltage is +_ 10, and for measuring the resistance is +_ 0.05
 
So the uncertainty in current theoritically is
 
 
 
3.)
 
 
 
;Goal
 
:Simulate the fission process using an incident neutron of energy 6.5 MeV and a layer of U-238 using Geant4.
 
 
 
 
 
;Status
 
: We are now seeing fission events for 1 micron thick sheets of U-2const
 
 
 
:We do not see fission fragments yet
 
 
 
 
 
;Suggestions:
 
 
 
1.) Move target to center of world and zoom in
 
 
 
2.) Add particle definition of ions
 
 
 
3.) add G4DiffuseElastic.cc process for charged pariticles > 0
 
 
 
Uranium238 = new G4Isotope(name="U238", iz=92, n=238, a=238.03*g/mole);
 
 
 
 
 
<pre>
 
G4IonTable *theIonTable =
 
G4ParticleTable::GetParticleTable()->GetIonTable();
 
G4RadioactiveDecay* theRadioactiveDecay =
 
new G4RadioactiveDecay();
 
for (G4int i=0; i<theIonTable->Entries(); i++)
 
{
 
G4String particleName =
 
theIonTable->GetParticle(i)->GetParticleName();
 
if (particleName == "GenericIon") {
 
G4ProcessManager* pmanager =
 
theIonTable->GetParticle(i)->GetProcessManager();
 
pmanager->AddProcess(theRadioactiveDecay);
 
}
 
 
 
 
 
// ions
 
  G4Deuteron::Deuteron();
 
  G4Triton::Triton();
 
  G4He3::He3();
 
  G4Alpha::Alpha();
 
  G4GenericIon::GenericIonDefinition();
 
 
 
} else if (particleName == "alpha" ||
 
              particleName == "He3" ||
 
              particleName == "GenericIon") {
 
 
 
      pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
 
      G4ionIonisation* ionIoni = new G4ionIonisation();
 
      ionIoni->SetStepFunction(0.1, 20*um);
 
      pmanager->AddProcess(ionIoni,                  -1, 2, 2);
 
 
 
   
 
 
 
</pre>
 
 
 
=8/17/09=
 
1.)Convert  table to a graph of "Thickness (mils)" on x-axis and "Deflection (<math>\mu</math> m)" on y-axis.  With horizontal line at 20 microns.  Any thickness with deflection less than 20 microns may be used.
 
 
 
change units to micron and make y-axis logarithmic
 
 
 
[[Image: Deflection_thickness_ss.jpeg | 200 px]]
 
 
 
 
 
 
 
;Thermal Expansion Coefficient:
 
 
 
In addition to the probability of the mask deflection by its weight, thermal expansion is another effect that may decrease the efficiency  of the mask in covering the holes. The thermal expansion coefficient for stainless steel is  studied and equals to (um/<math>^o C</math>): (according to [http://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html])
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|   Stainless steel type          || um/<math>^o C</math>  ||(10-6 in/inF)
+
|TDC || 17 || PMT L
 
|-
 
|-
|Steel Stainless Austenitic (304)  || 17.3 || 9.6
+
|TDC B2|| 18|| GEM's trigout multi-hit
 
|-
 
|-
| Steel Stainless Austenitic (310)  || 14.4 || 8.0
+
|TDC B6|| 22|| GEM's B_p
 
|-
 
|-
|Steel Stainless Austenitic (316)    || 16.0 || 8.9
+
| TDC || 21 || PMT R
 
|-
 
|-
|Steel Stainless Ferritic  (410)     || 9.9 ||5.5
+
| TDC 6 || 30 (pulser) || triple coincidence (OR Mode)
 
|-
 
|-
| Copper                            ||     16.6      || 9.3
+
|TDC 7 || 23|| delayed GEM's trigout
 
|}
 
|}
  
In our case, the plate expansion toward the width  is negligible at 260 <math>^o C</math> (assuming the room temperature 20 <math>^o C</math>), but heating stainless steel (304) plate to the same temperature  will cause  (0.58mm) change in length! we should be careful as we are welding the ends, or it is better if there is a way to clip the edges to avoid the deflection by length expansion.
 
 
;Areal thermal expansion
 
 
At room temperature, a 0.4 mm length square of stainless steel is going to cover a hole in  a copper plate of diameter 0.4 mm. But, as soon as both plates expose to  (300 <math>^o C</math>) furnace, the area will increase by the following formula:
 
 
<math> \frac{ \delta A}{A} = 2 \alpha (\delta T) </math>   
 
 
So the change in area for SS-plate is 7.6 *10^-4 mm^2, but for the copper is 2.3 * 10^-3 mm^2, a wider mask line should be used.i.e 0.4mm SS-plate width will not cover completely the hole at 300 <math>^o C</math>.
 
 
 
 
2.) What is uncertainty in the current used to calculate the expected voltage drop.
 
 
the uncertainty in voltage can be given by the following formula:
 
 
 
Insert expression for <math>I_{11}</math> and calculate it using the measured resistances below also propagate error of measured resistances
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|                       || measured (Mohm)||  Voltage (V)measured  || I  measured (mA)
+
|Run Number||Date || start || end || Time (min) || Shutter || Source ||  Count rate (counts/min) || Notes
 
|-
 
|-
| <math> R_{T11} </math> ||     0.56      <math>\pm</math> 0.01    ||   165.0 <math>\pm</math> 0.1 || 375 <math>\pm</math> 6.7
+
| 7273|| 08/06/14 || 07:10:38 || 11:41:00 ||  12502 || open || off || 67 || 0.1 flow rate
 +
 
 
|-
 
|-
|<math> R_{T22} </math>  ||     0.47  <math>\pm</math>  0.01         ||     98.6 <math>\pm</math> 0.1          || 253 <math>\pm</math> 6.7
+
| 7274|| 08/06/14 || 11:49:35 || 18:15:01 || 23126 || closed || off || 39 || 0.1 flow rate
|-
 
| <math> R_{T33} </math> ||     0.42  <math>\pm</math>  0.01          ||           81.5 <math>\pm</math> 0.1       || 259 <math>\pm</math> 6.7
 
|-
 
|}
 
 
 
Why aren't the currents the same?
 
Measure the voltage and resistance at each junction , compute current and compare
 
 
 
=8/19/2009=
 
  
{| border="1" cellpadding="4"
 
 
|-
 
|-
|                       || measured (Mohm) ( <math>\pm</math> 0.01)|| Voltage (V)measured ( <math>\pm</math>  0.1) || I (uA)
+
| 7275|| 08/06/14 || 20:37:07 || 09:10:10||  || closed || off || 40 || 0.2 flow rate
 
|-
 
|-
| <math> R_{8} </math> ||     0.56        ||  165.0|| 294  <math>\pm</math>  5
+
| 7276|| 08/06/14 || 09:15:00 ||  09:32:00||  || open || off || 80 || 0.2 flow rate amplification increases from 50 to 100
 
|-
 
|-
|<math> R_{3} </math> ||     1.01    ||       244.0 ||  241 <math>\pm</math>  2  
+
| 7277|| 08/06/14 || 09:33:08 || 11:40:42||  7654 || open || off ||  81 || 0.2  
 
|-
 
|-
| <math> R_{9} </math> ||     0.51              ||  99.0    || 194 <math>\pm</math> 4
+
| 7295|| 08/08/14 ||  17:36:58 || 19:55:59|| 4741  || closed || off ||  60 || 0.2
 +
 
 
|-
 
|-
| <math> R_{10} </math> ||     5.51        || 99.0            ||   16 <math>\pm</math> 0.03
+
| 7296|| 08/08/14 || 22:28:01 || 23:43:14||  || closed || off || 58 || 0.3
 
|-
 
|-
| <math> R_{11} </math> ||     1.02          ||       198.6      ||   195 <math>\pm</math> 2
+
| 7297|| 08/08/14 || 23:48:14|| 12:08:00  || 37186|| open || off || 93 || 0.3
 
|-
 
|-
| <math> R_{13} </math> ||     0.51          ||       81.4      ||   159 <math>\pm</math> 0.2
+
| 7298|| 08/09/14 ||  00:16:14|| 06:08:03 ||21109 ||closed || off ||  56 || 0.3
 +
 
 
|-
 
|-
| <math> R_{5} </math> ||     2.32          ||       81.4    ||   33 <math>\pm</math> 0.15
+
| 7299|| 08/10/14 ||  19:27:12|| 20:09:04 || 2152||closed || on || 107 || 0.1
 +
 
 
|-
 
|-
| <math> R_{7} </math> ||       1.04          ||       211.9 ||   203 <math>\pm</math> 2
+
| 7300|| 08/10/14 || 20:11:30|| 20:46:29 ||2099 ||open || on || 136 || 0.1
 +
 
 
|-
 
|-
|}
+
| 7302|| 08/11/14 || 06:53:14||  07:22:45 || 1771||closed || on ||  114 || 0.2
   
 
  
=8/28/2009=
+
|-
1.)Final version of deflection plot
+
| 7303|| 08/11/14 ||  07:26:58||  07:48:01 || 1263||open || on ||  167 || 0.2
  
  change units to micron and make y-axis logarithmic
+
|-
 +
| 7305|| 08/11/14 ||  13:21:16||  13:55:05 || 2029||open || on || 178 || 0.3
  
2.) Construct table of  measured <math>\Delta</math> V for each GEM foil preamp and the predicted <math>\Delta</math> V when <math>V_{GEM}</math> is 1000, 500, and 200 volts (also try 2 and 4 kV).  Use the current measure by CAEN power supply as input to calculation.  Measure the voltage difference using a voltmeter.
+
|-
 
+
| 7306|| 08/11/14 || 14:41:00|| 15:40:00 || 3540||closed || on |110 || 0.3
Perhaps our previous inconsistencies were due to bad current measurements?
 
 
 
3.) Dr. Forest installed GEANT 4.9.2 on Inca.  But still no ion tracking.
 
 
 
=9/8/2009=
 
 
 
1.)Final version of deflection plot
 
 
 
  Insert caption and increase font size of labels. Try bold lines.  Make 20 micron horizontal line dashed.  Make theory curve line black and thicker.
 
 
 
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
 
 
 
 
 
  Insert paragraph describing the results in the curve
 
 
 
 
 
2.) Construct table of  measured <math>\Delta</math> V for each GEM foil preamp and the predicted <math>\Delta</math> V when <math>V_{GEM}</math> is 1000, 500, and 200 volts (also try 2 and 4 kV).  Use the current measure by CAEN power supply as input to calculation.  Measure the voltage difference using a voltmeter.
 
  
Perhaps our previous inconsistencies were due to bad current measurements?
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|     Measured                || 200V|| <math> V_{expected} </math> || 500V|| <math> V_{expected} </math> ||1000V  || <math> V_{expected} </math> || 2000V || <math> V_{expected} </math> || 4000V || <math> V_{expected} </math>
+
| 7307|| 08/14/14 || 08:14:15|| 08:20:39 || 384||closed || off ||  || 0.1 noise measurements (pulser only)
 
|-
 
|-
| <math> V_{T11} </math> (V) <math>\pm</math> 0.1  || 24.3 || 24 <math>\pm</math>3|| 59.8|| 61 <math>\pm</math>6 ||118.6 || 123 <math>\pm</math>12|| 238.0 ||251.4 <math>\pm</math>23 || 481.0||  530.9 <math>\pm</math>48 
+
| 7308|| 08/14/14 || 08:22:43|| 08:29:23 || ||open || off || 1314 || 0.1 noise measurements (pulser only) same noise level as shutter closed (ch. 86) for Peak sensing ADC
 
|-
 
|-
|<math> V_{T22} </math>  (V) <math>\pm</math> 0.1  || 20.3  ||20 <math>\pm</math>3 || 50.2|| 51 <math>\pm</math>6  || 99.9|| 103 <math>\pm</math>11 || 201.9 || 211 <math>\pm</math>23 || 421.0||445 <math>\pm</math>48
+
| 7309|| 08/14/14 || 08:35:09 || 09:45:37 || 4229  || open || off || || 0.1 flow rate was not exact, little less.
 
|-
 
|-
| <math> V_{T33} </math> (V) <math>\pm</math> 0.1  ||   18.4 || 18 <math>\pm</math>3  || 45.3 || 46 <math>\pm</math>6 || 90.0|| 92.8 || 182.0 || 188 <math>\pm</math>22 || 381.0 || 398.2 <math>\pm</math>48
+
| 7310|| 08/14/14 || 09:46:12 || 11:18:39 || 5547 || open || off || 54 || 0.1 flow rate was not exact, little less.
 +
 
 
|-
 
|-
| <math> I_{tot} </math> (uA) <math>\pm</math> 1  || 43  || 44  || 110 ||  111 || 221 || 211 || 449|| 443  || 948 ||885 <math>\pm</math>60*
+
| 7311|| 08/14/14 || 11:19:45 || 13:01:57 ||  6132 || open || off || 52 || 0.1 flow rate was not exact, little less.
|}
 
 
 
*considering resistance error accumulates for 6 resistances connected in series (each one has 5%).
 
The measurements show that we have better accuracy in measuring the current and the voltage within the expected range of error.
 
 
 
Now do a table of Vin , and <math>\Delta</math> V Gem 1 ,2,3
 
 
 
3.) Dr. Forest installed GEANT 4.9.2 on Inca.  But still no ion tracking.
 
 
 
Koi, Tatsumi
 
Phone: (650) 926-4816
 
E-Mail: tkoi@SLAC.Stanford.EDU
 
 
 
suggests adding the physics list below
 
 
 
 
 
source/physics_lists/lists/src/HadronPhysicsQGSP_BIC.cc
 
 
 
=9/10/09 Ion Tracking=
 
 
 
You can track CF-232 if you add the line
 
 
 
G4GenericIon::GenericIonDefinition();
 
 
 
to the PhysicsList baryon contructor function as shown below
 
 
 
<pre>
 
void ExN02PhysicsList::ConstructBaryons()
 
{
 
  //  barions                                                                   
 
  G4Proton::ProtonDefinition();
 
  G4AntiProton::AntiProtonDefinition();
 
  G4GenericIon::GenericIonDefinition();
 
  G4Neutron::NeutronDefinition();
 
  G4AntiNeutron::AntiNeutronDefinition();
 
}
 
</pre>
 
 
 
=9/15/09=
 
 
 
1.)Final version of deflection plot
 
 
 
Insert caption and increase font size of labels.  Try bold lines.  Make 20 micron horizontal line dashed.  Make theory curve line black and thicker.
 
 
 
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
 
 
 
Insert paragraph describing the results in the curve.
 
 
 
The curve represents the relationship between the thickness and the deflection for a plate of stainless steel of width 0.4 mm and length 140mm when the weight is the only force that acts on it. Please look at [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#8.2F10.2F09] for more details about the factors that affects the value of the deflection.
 
The dashed line in the graph intersects with the with deflection line to determine the needed thickness for the plate to have a deflection of 20 um.
 
 
 
Now do a table of Vin , an, and <math>\Delta</math> V Gem 1 ,2,3
 
  
{| border="1" cellpadding="4"
 
 
|-
 
|-
|     Measured                || 200V||  500V || 1000V  ||2000V  || 4000V  || ?
+
| 7312|| 08/14/14 ||  13:10:50 || 14:28:07||  4637 || open || off || 72 || 0.1 flow rate was not exact, little less.
|-
 
| <math> \Delta V_{T11} </math> (V) <math>\pm</math> 0.1  || 11.9 || 29.8 || 59.1 ||119.2 || 241.7 || 3000
 
|-
 
|<math> \Delta V_{T22} </math>  (V) <math>\pm</math> 0.1  ||10.2 || 25.2  || 50.8 ||103.2 || 215.5 || 2800
 
|-
 
| <math> \Delta V_{T33} </math> (V) <math>\pm</math> 0.1 ||9.21 || 23.1 || 46.1 || 93.2 || 195.5 || 2500
 
|}
 
  
<math> \Delta V_{T33} </math>  is the potential difference between the protection resistance (10 Mohm) and the resistance which is mainly responsible for providing the voltage for the THGEM foil. Please look at the figure [http://wiki.iac.isu.edu/images/0/05/Abdel_GEM_HV_distrib_6-19-09.png]. For instance, <math> \Delta V_{T33} </math>  is the voltage  between LP3 and LP4.
 
 
=9/22/09=
 
1.) deflections
 
 
According to the figure I contacted a prof. in civilian engineering, He recommended another formula looks simpler and appropriate for a beam fixed from both sides. I am working on the figure and the information that we may extract from formula.
 
 
Enter formula with reference
 
 
I also talked to him about anything  we should consider  affects the mask job when it is heated to 300 degrees Celsius, He suggested to buy a Stainless steel wire (beam) that has the same dimension to the one that will cover a row of holes, then heat it and check what is going to happen to the beam. In other words, build a one beam mask and study what will happen to it (we are considering only weight deflection!)
 
 
 
2.) TGEM HV
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| Applied Potential (V)  ||<math> V_{T11} </math> (V) || <math> \Delta V_{T22} </math> (V) ||<math> V_{T22} </math> (V) ||<math> \Delta V_{T22} </math> (V)|| <math> V_{T33} </math> (V)|| <math> \Delta V_{T33} </math> (V)
+
| 7313|| 08/14/14 ||  14:30:24|| 15:38: 48||  4056  || open || off || 80 || 0.1 flow rate as is used to be
 
|-
 
|-
|     200    || 24.3 || 11.9 || 20.3  ||10.2 ||18.4  || 9.2
+
| 7314|| 08/14/14 ||  15:41: 52|| 16:46:55 || 3897|| open || on || 147 || 0.1 flow rate as is used to be
 
|-
 
|-
|   500      || 59.8 || 29.8  || 50.2  || 25.2 || 45.3 || 23.1
+
| 7315|| 08/14/14 ||  16:49: 59|| 19:14:30  ||8729|| open || on || 148 || 0.1 flow rate as is used to be
 
|-
 
|-
1000      || 118.6 ||59.1  || 103.0  || 50.8 ||90.0 ||46.1
+
| 7316|| 08/14/14 |19:18:43 || 22:14:07  ||10596 || open || on ||147  || 0.1 flow rate as is used to be
 
|-
 
|-
| 2000        || 238.0 ||119.2 || 211.0  ||103.2  ||182.0 || 93.2
+
| 7317|| 08/14/14 ||  22:18:24 || 10:18:52  || 43220|| open || on || 0.0095|| 0.1 flow rate, triple coincidence
 
|-
 
|-
| 4000        || 481.0  || 241.7 ||421.0 ||215.5  ||381.0 || 195.5
 
|}
 
 
According to the measurements taken, we conclude :
 
 
    <math> \ V_{T} </math> = (approximately) 2 <math> \Delta V_{T} </math>
 
So if <math> \Delta V_{T} </math> is needed to be as the the table below then the value for <math> \ V_{T} </math> can be determined depending on the previous conclusion:
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| THGEM foil resistance (Mohm) ||<math> \Delta V_{T} </math>(V) || <math> V_{T} </math> (V) || I (mA) || P (W)
+
| 7318|| 08/15/14 ||  10:24:00 || 12:42:23 || 8303|| open || on || 147  || 0.1 flow rate
 
|-
 
|-
| <math>  R_{11} </math> = 0.56|| 3000          || 6000      ||     11    ||  64 
+
| 7319|| 08/15/14 ||  12:46:14 || 15:46:09 || 10795|| open || on || 148 || 0.1 flow rate
 
|-
 
|-
| <math>  R_{22} </math> = 0.46 || 2800          || 5600      ||   12    ||  66
+
| 7323|| 08/15-16/14 ||  16:59:39 || 06:03:11 || 46970|| open || off || 0.0011 || 0.1 flow rate, triple coincidence
 
|-
 
|-
| <math>  R_{33} </math> = 0.42|| 2500          ||  5000        ||    12    ||  61
+
| 7329|| 08/16/14 ||   07:06:32 || 10:35:35 || 12543|| open || off || 83 || 0.1 flow rate, PMT's charge is measured for L and R
|}
 
From the table, the power supply potential should be 16,600 V.
 
 
 
 
 
Study the 12 Volt power system in the links below and determine how to copy
 
 
 
 
 
3.) Resistive paste
 
I called the paste company [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#7.2F31.2F2009], there were in process to make the paste in their labs (because of that it took them that long), looks they succeeded, but until now there is not any information about the shipping which will probably be available on Friday. So I will call (bug) them again on that day.
 
 
 
The paste was shipped on Friday, we are expecting to have it by Wednesday Sept. 30, the company should call me again for tracking number! but I will call them tomorrow.
 
 
 
 
 
=9/29/09=
 
 
 
;Paste
 
The paste was shipped on Friday, we are expecting to have it by Wednesday Sept. 30, the company should call me again for tracking number! but I looks I should call again!
 
 
 
 
 
 
 
;Deflection vs Thickness:
 
Depending on the equation [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#8.2F10.2F09] :
 
 
 
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
 
 
 
 
 
==HV ==
 
 
 
[http://arxiv.org/abs/0905.2916 M. Cortesi] used a CAEN N471A to individually supply each THGEM stage.  The HV supply was set to trip at 50 nA and a 15-20 M Ohm resister was attached in series with the Power supply to limit discharge currents.
 
 
 
Circuit:
 
 
 
The paper gives an idea to how to use the active divider to avoid using more that high voltage power supply, the active divider circuit.
 
 
 
There is a little problem in using that circuit: the maximum voltage provided to the THGEM foil is maximum 1800 V, and that will create a current 22 mA.
 
 
 
Most of the experiments, they starts to run separate HV-power supply connected to a series of high resistances (15- 20 Mohm).
 
 
 
=10/6/09=
 
 
 
1.) Resistive Paste:
 
 
 
Describe past mixture procedure and curing.
 
 
 
technical data sheet[[File:ED7100_Series_paste.pdf]]
 
 
 
safety data sheet  [[File:ED7100_OSHA_MSDS.pdf]]
 
 
 
2.) Change units on deflection plot and insert new plot
 
 
 
3.) Insert link for resistor to use in HV network
 
 
 
references (HV circuit)
 
 
 
 
 
 
 
 
 
 
 
 
 
4.) Simulation
 
 
 
a.) Zoom in to see target and fission fragments
 
 
 
b.) implement Fission Model G4BertiniEvaporation in  Physics list
 
 
 
=10/7/09=
 
 
 
==(n,f) event==
 
 
 
 
 
I added the following to the physics list
 
 
 
<pre>
 
The header files are put into ExN02PhysicsList.cc
 
 
 
#include "G4HENeutronInelastic.hh"
 
#include "G4NeutronInelasticProcess.hh"
 
#include "G4CascadeInterface.hh"
 
#include "G4BertiniEvaporation.hh"
 
 
 
  else if (particleName == "neutron") {
 
 
      G4CascadeInterface* bertiniModel = new G4CascadeInterface();
 
      G4NeutronInelasticProcess* inelProcess = new G4NeutronInelasticProcess();
 
      inelProcess->RegisterMe(bertiniModel);
 
      pmanager->AddDiscreteProcess(inelProcess);
 
}
 
</pre>
 
 
 
 
 
And I saw the event
 
 
 
 
 
<pre>
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV  14.3 nm  14.3 nm      Target  NeutronInelastic
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = U238[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  25.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.14e+03 fm -7.54e+03 fm    -10 cm      0 eV  25.7 keV  101 nm    101 nm      Target      hIoni
 
 
 
</pre>
 
 
 
By oct. 8 the follwing event is tracked by the GEANT4 with U-238 target with 7 MeV neutron beam:
 
 
 
<pre>
 
:*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm      7 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      7 MeV    0 eV      5 um      5 um      Target  Transportation
 
    2      0 fm      0 fm  -9.85 cm      0 eV      0 eV  1.51 mm  1.51 mm      Tracker  NeutronInelastic
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = N14[0.0],  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -9.85 cm  1.45 MeV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1  -63.2 um  33.9 um  -9.69 cm    177 keV  1.27 MeV  1.56 mm  1.56 mm      Tracker      hIoni
 
    2  -181 um    63 um  -9.59 cm      0 eV    177 keV  1.13 mm  2.69 mm      Tracker      hIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -9.85 cm    382 keV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1  -2.37 mm  -1.45 mm    -10 cm    382 keV    0 eV  3.16 mm  3.16 mm      Tracker  Transportation
 
    2  -2.38 mm  -1.45 mm    -10 cm    382 keV    0 eV  10.5 um  3.17 mm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -9.85 cm  1.66 MeV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1    10 cm  1.17 cm  -2.11 cm  1.66 MeV    0 eV  12.7 cm  12.7 cm      Tracker  Transportation
 
    2    10 cm  1.17 cm  -2.11 cm  1.66 MeV    0 eV  6.35 um  12.7 cm  OutOfWorld  Transportation
 
</pre>
 
 
 
I thick we still need to improve the stepping verbose, since whenever the beam is run, there is a limited number of events are detected and usually are the neutrons that just pass, I run the beam only with 100 neutrons only to track the useful ones.
 
 
 
By oct. 12 , fission event is detected after I turned off the inelastic process code using U-238 as target , the result :
 
 
 
<pre>
 
 
 
### Run 2 start.
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV    131 nm    131 nm      Target    nFission
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = U238[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  25.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.14e+03 fm -7.54e+03 fm    -10 cm      0 eV  25.7 keV  101 nm    101 nm      Target      hIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  96.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -759 nm  -940 nm    -10 cm  96.7 keV    0 eV  3.58 um  3.58 um      Target  Transportation
 
    2  -4.5 cm  -5.58 cm    10 cm  96.7 keV    0 eV  21.2 cm  21.2 cm      Tracker  Transportation
 
    3  -4.5 cm  -5.58 cm    10 cm  96.7 keV    0 eV  3.72 um  21.2 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    343 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.49 um    3.5 um    -10 cm    343 keV    0 eV  4.07 um  4.07 um      Target  Transportation
 
    2  3.46 um  8.14 um    -10 cm    343 keV    0 eV    5.4 um  9.47 um        World  Transportation
 
    3  4.25 cm    10 cm  -5.86 cm    343 keV    0 eV  11.6 cm  11.6 cm      Tracker  Transportation
 
    4  4.25 cm    10 cm  -5.86 cm    343 keV    0 eV  4.07 um  11.6 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    597 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.93 um  -3.5 um    -10 cm    597 keV    0 eV  4.65 um  4.65 um      Target  Transportation
 
    2  -11.6 um  -13.8 um    -10 cm    597 keV    0 eV  13.7 um  18.4 um        World  Transportation
 
    3  -8.38 cm    -10 cm  -7.56 cm    597 keV    0 eV  13.3 cm  13.3 cm      Tracker  Transportation
 
    4  -8.38 cm    -10 cm  -7.56 cm    597 keV    0 eV  4.65 um  13.3 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 4,   Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.07 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    210 nm  -1.63 um    -10 cm  1.07 MeV    0 eV  3.99 um  3.99 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:   Particle = gamma,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.68 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.06 um    3.5 um    -10 cm  1.68 MeV    0 eV  5.24 um  5.24 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  2.67 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -1.44 um    3.5 um    -10 cm  2.67 MeV    0 eV  3.84 um  3.84 um  OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
Fission event is also detected after I turned off the inelastic process code using Th-232 as target , the result :
 
 
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV    400 nm    400 nm      Target    nFission
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Th232[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    39 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.21e+04 fm -2.88e+04 fm    -10 cm      0 eV    39 keV  177 nm    177 nm      Target      hIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    143 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    3.5 um  -92.2 nm    -10 cm    143 keV    0 eV  4.75 um  4.75 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    843 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -1.1 um    165 nm    -10 cm    843 keV    0 eV  3.29 um  3.29 um      Target  Transportation
 
    2  -7.09 cm  1.07 cm    10 cm    843 keV    0 eV  21.2 cm  21.2 cm      Tracker  Transportation
 
    3  -7.09 cm  1.07 cm    10 cm    843 keV    0 eV  3.72 um  21.2 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    956 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -1.85 um  -2.71 um    -10 cm    956 keV    0 eV    5.1 um    5.1 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.42 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.5 um  -300 nm    -10 cm  1.42 MeV    0 eV  4.41 um  4.41 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.43 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  2.67 um    3.5 um    -10 cm  1.43 MeV    0 eV  4.46 um  4.46 um  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.66 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    393 nm  -3.5 um    -10 cm  1.66 MeV    0 eV  3.54 um  3.54 um      Target  Transportation
 
    2    494 nm  -4.39 um    -10 cm  1.66 MeV    0 eV    904 nm  4.44 um  OutOfWorld  Transportation
 
>>> Event 0
 
    8 trajectories stored in this event.
 
</pre>
 
 
 
 
 
=10/20/09=
 
 
 
1.) Redo resistor network below  to reflect one in paper.  Find resistance required to have 2000 Volt difference between two the top and bottom of a GEM card and have correct power rating.
 
 
 
 
 
 
 
Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[http://wiki.iac.isu.edu/index.php/File:Media-Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors_(HV_circuit).pdf#filelinks]
 
 
 
The new HV-circuit is represented by the figure:
 
 
 
 
 
[[Image:2_lines _THGEM_2_lines _THGEM_circuit.png | 200 px|thumb|Circuit 1]][[Image:3l_line_THGEM_circuit.png | 200 px|thumb|Circuit 2]] [[Image:paper_HV_Circuit.png | 200 px|thumb|Circuit 3]]
 
 
 
 
 
 
 
{| border="1" cellpadding="4"
 
|-
 
|           Resistor          || value || 0.3[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=300KW-2-ND]||  0.62 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=620KW-2-ND]|| 1 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=1.0MW-2-ND]  ||1.25 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204J-1.25M-ND] || 1.5 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-1.5M-ND] ||2 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-2M-ND]|| 3[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=2-1625958-9-ND]  || 5 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-5M-ND]|| 10[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204FE-10M-ND] || price
 
|-
 
| <math> R_{1} </math> ||  8.6    ||    ||    1  ||  1||        ||      || 1 ||  || 1  ||  ||  10.13
 
 
|-
 
|-
|<math>  R_{2} </math>  || 4.3    ||  1 ||     || ||       ||     || 2 ||  ||    ||  || 11.96
+
| 7330|| 08/16/14 ||  10:41:58 || 12:48:33 || 7595 || open || on ||  146 || 0.1 flow rate
 
|-
 
|-
| <math>  R_{3} </math>  || 10    ||    ||     || ||       ||       ||  || ||    || 1 ||  5.59
+
| 7331|| 08/16-17/14 ||    12:52:07 || 06:45:03 || 64384 || open || off || 0.0016 || 0.1 flow rate, triple coincidence, coda counted 111 but the data file is empty!
 
|-
 
|-
| <math>  R_{4} </math>  || 3.3    ||  1 ||     || 1 ||       ||     || 1 || ||    ||  ||  6.3
+
| 7332|| 08/17/14 ||  06:52:26 || 07:04:45|| 739 || open || on || 1367  || 0.1 flow rate noise measurements with the wave generator
 
|-
 
|-
| <math>  R_{5} </math>  || 4.8    ||   ||     ||   ||       ||     ||    ||  || 1   ||  ||  3.95
+
| 7333|| 08/17/14 ||   07:05:50 || 08:53:54 || || open || on || 155 || 0.1 flow rate
 
|-
 
|-
|        total            ||    || 2  ||  1    ||  2    ||        ||      ||  4  ||  ||  2  || 1 ||       
 
|}
 
  
 
+
| 7334|| 08/17/14 ||  08:57:02 || 13:13:38 ||  || open || off ||  82 || 0.1 flow rate
 
 
 
 
 
 
according to the suggestion to add new line of resistances as represented in the last figure, this change the the old circuit properties. the following table summarizes these differences:
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|             ||  2_lines _THGEM_circuit || 3l_line_THGEM_circuit
+
| 7337|| 08/17/14 ||  14:17:24 ||  14:30:29||  || open || on || 1400 || 0.1 flow rate, GEM 2.92 kV , CATH 3.47kV(+50V),  noise measurements with the wave generator
 
|-
 
|-
Total Resistance (Mohm) || 48.45               || 41.7
+
|7338|| 08/17/14 |14:31:37|| 16:17:45|| || open || on || 163  || 0.1 flow rate
 
|-
 
|-
|  Current (mA)||      0.31 ||    0.36
 
|-
 
|  Max. Voltage Per THGEM Foil (V) || (1.43Mohm)444.3 || (1.23Mohm)442.3
 
|-
 
|  Power (W) ||  0.14  || 0.16
 
|}
 
 
 
2.) reproduce Figure 3 in paper below
 
  
http://www.helsinki.fi/~miheikki/system/refs/heikkinen/chep09geant4.pdf
+
|7339|| 08/17/14 || 16:20:25|| 16:35:45 || || open || off || 1368  || 0.1 flow rate, noise measurements with the wave generator
 
 
=10/27/09 (Paste processing procedure)=
 
;Paste
 
 
 
[[Paste_painting_procedure]]
 
 
 
;HV Circuit:
 
 
 
Update the figure for the high voltage circuit.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
 
 
 
;Deflection:
 
 
 
Figure is updated for the deflection figure.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#9.2F15.2F09]
 
 
 
;Simulation:
 
   
 
Chips interface is used but unfortunately the result still the same, a neutron hits then two of them leave without any fragment tracking.
 
 
 
 
 
<pre>
 
 
 
G4StringChipsInterface* theCascade = new G4StringChipsInterface();
 
G4HadronFissionProcess* fissionProcess = new G4HadronFissionProcess();
 
fissionProcess->RegisterMe(theCascade);
 
pmanager->AddDiscreteProcess(fissionProcess);
 
 
 
</pre>
 
 
 
<pre>
 
 
 
*********************************************************************************************************
 
* G4Track Information:   Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV  4.31 um  4.31 um      Target    nFission
 
 
 
*********************************************************************************************************
 
* G4Track Information:   Particle = U237[0.0],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  25.2 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.35e+03 fm 4.81e+03 fm    -10 cm      0 eV  25.2 keV  99.7 nm  99.7 nm      Target      hIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:   Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    165 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.44 um    -77 nm    -10 cm    165 keV    0 eV    1.6 um    1.6 um      Target  Transportation
 
    2    10 cm  -5.35 mm  -5.22 cm    165 keV    0 eV  11.1 cm  11.1 cm      Tracker  Transportation
 
    3    10 cm  -5.35 mm  -5.22 cm    165 keV    0 eV  5.55 um  11.1 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:   Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    156 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.7 um    -5 um    -10 cm    156 keV    0 eV  5.69 um  5.69 um      Target  Transportation
 
    2  -41.9 um  -77.6 um    -10 cm    156 keV    0 eV  82.6 um  88.3 um  OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
=10/30/09=
 
 
 
;Resistors for THGEM HV-circuit:
 
 
 
{| border="1" cellpadding="4"
 
|-
 
| || 5 MOHM [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-5M-ND] and [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204J-5M-ND]|| 10 MOHM [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204FE-10M-ND]
 
 
|-
 
|-
|  quantity || 6 || 12
 
|}
 
 
=11/3/09=
 
 
;Paste
 
 
need to finish procedure in link below.  Insert info from vendor describing reducing the paster for an ink jet printer.
 
 
[[Paste_painting_procedure]]
 
 
Give a copy of paste MSDS to Roy dunker and ask for permission to use their oven located in the LDS hood
 
 
;HV Circuit:
 
 
Update the figure for the high voltage circuit.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
 
 
Arrange with Tamuna some time to use the power supply to check power on the circuit design.
 
 
;Deflection:
 
 
Redo deflection figure.  [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#9.2F15.2F09]
 
 
;Simulation:
 
 
reproduce Figure 3 in paper below
 
 
[[File:Abla_incl.pdf]]
 
 
[[File:abla_incl_models.pdf]]
 
 
=11/11/09=
 
;Paste :
 
please follow the link for the update: [http://wiki.iac.isu.edu/index.php/Paste_painting_procedure#11.2F9.2F09]
 
 
  
;HV Circuit:
+
|7340|| 08/17/14 ||  16:37:01 || 20:33:04||  || open || off || 95  || 0.1 flow rate
 
 
The circuit were tested as was suggested the figure [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
 
, very low current was passing through the circuit which relatively decreased the dissipated power through the resistors.
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Resistor arrangements and values || Current(P.S.) (uA)<math>\pm</math> 1|| Current through each line (uA)<math>\pm</math> 1 (2 lines only) ||<math> V_{THGEM1} </math> (V) <math>\pm</math> 1 || <math> V_{THGEM2} </math> (V)<math>\pm</math> 1 || dissipated power (W)<math>\pm</math> 0.1%
+
|7341|| 08/17-18/14 ||  20:40:16|| 06:18:43 || || open || off || 0.0015  || 0.1 flow rate, triple coincidence
 
|-
 
|-
| Third circuit [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] || 50 || 25 || 105 || 85 || 0.025
+
|7342|| 08/18/14 ||  06:25:44 || 06:37:43 || || open || on || 1403  || 0.1 flow rate, noise measurements
|-
 
| removing <math> R_{2}</math>  ||50 || 25|| 136 || 136 || 0.006
 
|-
 
|  <math> R_{1}</math> = 20 Mohm ||  41 || 20.5|| 177 || 181 ||0.008
 
|-
 
| <math> R_{1}</math> = 30 Mohm (with one protection resistor) ||38 || 19 || 195 || 186 || 0.11
 
|-
 
|<math> R_{1}</math> = 30 Mohm (with all figure resistors) || 38 || 19 || 159 || 122 || 0.11
 
|}
 
please note that all the previous measurements with  <math> HV+</math> = 1 kV
 
 
 
 
 
Result: highly recommended to increase the main resistor(s) which will provide the THGEM foil with needed potential to 30 Mohm which make the current less that 19 uA in each one,  but at the same time this will provide each foil with around 200 V when the the power supply is providing 1 kV.So using 15 kV power supply will easily provide each foil with 3000 V (which is our goal).
 
 
 
 
 
;Simulation:
 
 
 
geant4.9.2.p01/examples/extended/radioactivedecay/exrdm/src
 
 
 
Abla model has a little problem to be defined, I tried to use the following statement in ExN02PhysicsList but unfortunately is not working.
 
 
 
<pre>
 
    G4InclCascadeInterface* bertiniModel = new G4InclCascadeInterface();
 
    G4AblaFission* fissionProcess = new G4AblaFission();
 
    fissionProcess->RegisterMe(bertiniModel);
 
    pmanager->AddDiscreteProcess(fissionProcess);
 
</pre>
 
 
 
 
 
Depending on a reference used in the same paper [[File:abla_incl_models.pdf]], Binary and Bertini models are used for neutron or proton interactions
 
<pre>
 
 
 
G4BinaryCascade* bcModel = new G4BinaryCascade();
 
G4HadronFissionProcess* fissionProcess = new G4HadronFissionProcess();
 
fissionProcess->RegisterMe(bcModel);
 
pmanager->AddDiscreteProcess(fissionProcess);
 
</pre>
 
 
 
 
 
(same as ABLA and the results can be compared). So i added Binary Cascade model to  ExN02PhysicsList But unfortunately the result is weird!!!
 
the following error message is not convenient !!
 
 
 
<pre>
 
Computed tolerance = 2.0001e-09 mm
 
Target is 0.001 cm of Carbon
 
There are 1 chambers in the tracker region. The chambers are 50 mm of ArgonGas
 
The distance between chamber is 10 cm
 
Segmentation fault
 
</pre>
 
 
 
=12/8/09=
 
 
 
<pre>
 
      else if (particleName == "proton") {
 
      //protons
 
        G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
 
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
        G4ProtonInelasticProcess *protonInelasticProcess = new G4ProtonInelasticProcess();
 
        protonInelasticProcess->AddDataSet(new G4ProtonInelasticCrossSection());
 
        protonInelasticProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(protonInelasticProcess);
 
      }
 
      else if (particleName == "neutron") {
 
      //neutrons
 
        G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
 
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
        G4NeutronInelasticProcess *neutronInelasticProcess = new G4NeutronInelasticProcess();
 
        neutronInelasticProcess->AddDataSet(new G4NeutronHPFissionData());
 
        neutronInelasticProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(neutronInelasticProcess);
 
 
 
</pre>
 
 
 
Below is a sample event which appears to be the reaction
 
 
 
<math>n + {330 \atop 92 }U_{238} \rightarrow {173 \atop 49 }In_{124} + {152 \atop 43 }Tc_{109} + 6n</math>
 
 
 
 
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    10 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    10 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -1.94 mm      0 eV      0 eV  3.06 mm  79.8 cm      Target  NeutronInelastic
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = In124[16830.9],  Track ID = 9,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  84.1 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -686 um  1.79 mm    -5 mm  84.1 MeV    0 eV  3.61 mm  3.61 mm      Target  Transportation
 
    2  -17.9 cm  46.7 cm    -80 cm  84.1 MeV    0 eV  93.8 cm  94.2 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm    215 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.93 mm    -5 mm  -3.86 mm    215 keV    0 eV  6.64 mm  6.64 mm      Target  Transportation
 
    2  -62.9 cm    -80 cm  -30.8 cm    215 keV    0 eV  1.06 m    1.06 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,   Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  2.42 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.86 mm    271 um    -5 mm  2.42 MeV    0 eV    4.2 mm    4.2 mm      Target  Transportation
 
    2  -74.8 cm  7.07 cm    -80 cm  2.42 MeV    0 eV  1.09 m    1.1 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Tc109[16830.9],  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  90.1 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.79 mm  1.98 mm    -5 mm  90.1 MeV    0 eV  4.59 mm  4.59 mm      Target  Transportation
 
    2    -73 cm  51.8 cm    -80 cm  90.1 MeV    0 eV  1.19 m    1.2 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  2.85 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.26 mm      5 mm  -3.15 mm  2.85 MeV    0 eV  5.62 mm  5.62 mm      Target  Transportation
 
    2  -36.2 cm    80 cm  -19.5 cm  2.85 MeV    0 eV  89.4 cm  89.9 cm  OutOfWorld  Transportation
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  1.36 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -4.91 mm      5 mm  -4.1 mm  1.36 MeV    0 eV  7.33 mm  7.33 mm      Target  Transportation
 
    2  -78.6 cm    80 cm  -34.6 cm  1.36 MeV    0 eV  1.17 m    1.17 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  7.03 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.6 mm      5 mm  -2.38 mm  7.03 MeV    0 eV  5.65 mm  5.65 mm      Target  Transportation
 
    2  -41.6 cm    80 cm  -7.21 cm  7.03 MeV    0 eV  89.9 cm  90.4 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm    287 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.54 mm  -3.74 mm    -5 mm    287 keV    0 eV  5.07 mm  5.07 mm      Target  Transportation
 
    2    33 cm    -80 cm  -65.6 cm    287 keV    0 eV  1.08 m    1.08 m    OutOfWorld  Transportation
 
>>> Event 4
 
    9 trajectories stored in this event.
 
5 events have been kept for refreshing and/or reviewing.
 
 
 
 
 
</pre>
 
 
 
=12/14/09=
 
 
 
1.) For class project overlap GEANT4 fission atomic mass distribution with data locate in NIM article:  n U-235 measurements : Diiorio NIM vol B147 (1977)487
 
 
 
2.) Create Xmgrace file to reproduce graph below.  Upload original measurements and make a table in the wiki.
 
 
 
[[File:Tingjin_IntConfNucDataforScienceTech_2007.pdf]]
 
 
 
3.) HV measurements
 
 
 
 
 
;Pb Proton-fission:
 
The mass number is tracked for the fragment instead of he name by
 
 
 
1-Edit ExN02SteppingVerbose.cc in for-loop, replace ParticleName by AtomicMass.
 
 
 
2- Add the the following to for-loopif:
 
 
 
 
 
  (fTrack->GetDefinition()->GetPDGEncoding()==2212 &&fStep->GetPostStepPoint()->GetProcessDefinedStep()->GetProcessName()=="NeutronInelastic" && fTrack->GetVolume()->GetName() =="Target" && (*fSeco$)  [lp1]->GetDefinition()->GetAtomicMass()>1)
 
                    outfile
 
                    << (*fSecondary)[lp1]->GetDefinition()->GetAtomicMass()
 
 
 
 
 
n U-235 measurements : Diiorio NIM vol B147 (1977)487
 
 
 
[[File:Tingjin_IntConfNucDataforScienceTech_2007.pdf]]
 
 
 
 
 
==Th-232 Fission CrossSection==
 
[[File:Th-232_fission_cross_section.jpg|200px]]
 
 
 
=12/15/2009=
 
; Thermal Neutron and U_235 fission: [[File:Diiorio NIM vol B147 (1977)487.pdf]]
 
 
 
 
 
1) For thermal neutron (0.025 MeV) we can not use the same class mentioned in [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#12.2F8.2F09] th Simulation were running for a long time but not event.
 
 
 
2) Different Neutron data sets were used also:
 
 
 
  neutronInelasticProcess->AddDataSet(new G4HadronFissionDataSet()); (does not give any event)
 
  neutronInelasticProcess->AddDataSet(new G4NeutronHPorLFissionData());(compiles perfectly but GEANT4 crashes after 1st neutron fired)
 
 
 
3) Recently a new presentation done by describes the the thermal neutron interactions, he is replacing the Inelastic process to Elastic process even registered by other classes or used with neutron data sets. [[File:THermal_neutrons_interactions.pdf]]
 
 
 
=01/05/10=
 
 
 
;Simulation of the mass distribution spectra for Throrium-232 for 7.5 MeV:
 
 
 
[[File:Energy_7.5_a_include1.jpg|100px]]    [[File:Energy_7.5_a_biggerthan1.jpg|100px]]
 
 
 
(1st figure is the full spectrum but the 2nd one for a>1)
 
 
 
Three kinds of events tracked :
 
 
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -3.06 mm      0 eV      0 eV  1.94 mm  79.7 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  3(Rest= 0,Along= 0,Post= 3), #SpawnTotal=  3 ---------------
 
    :      0 fm      0 fm  -3.06 mm    578 keV        1
 
    :      0 fm      0 fm  -3.06 mm    291 keV        1
 
    :      0 fm      0 fm  -3.06 mm  35.5 keV      231
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Th231[14330.9],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm  35.5 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    251 um    2.7 mm      5 mm  35.5 keV    0 eV    8.5 mm    8.5 mm      Target  Transportation
 
    2  2.43 mm  2.61 cm    7.5 cm  35.5 keV    0 eV  7.39 cm  8.24 cm        World  Transportation
 
    3  3.17 mm  3.41 cm  9.87 cm  35.5 keV    0 eV    2.5 cm  10.7 cm      Tracker  StepLimiter
 
    4  3.91 mm    4.2 cm  12.2 cm  35.5 keV    0 eV    2.5 cm  13.2 cm      Tracker  StepLimiter
 
    5  4.65 mm  4.99 cm  14.6 cm  35.5 keV    0 eV    2.5 cm  15.7 cm      Tracker  StepLimiter
 
    6  5.39 mm  5.79 cm    17 cm  35.5 keV    0 eV    2.5 cm  18.2 cm      Tracker  StepLimiter
 
    7  6.12 mm  6.58 cm  19.3 cm  35.5 keV    0 eV    2.5 cm  20.7 cm      Tracker  StepLimiter
 
    8  6.86 mm  7.37 cm  21.7 cm  35.5 keV    0 eV    2.5 cm  23.2 cm      Tracker  StepLimiter
 
    9  6.98 mm    7.5 cm  22.1 cm  35.5 keV    0 eV  3.94 mm  23.6 cm      Tracker  Transportation
 
  10    2.5 cm  26.9 cm    80 cm  35.5 keV    0 eV  61.1 cm  84.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm    291 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -624 um  -1.4 mm    -5 mm    291 keV    0 eV  2.47 mm  2.47 mm      Target  Transportation
 
    2  -25.6 cm  -57.4 cm    -80 cm    291 keV    0 eV  1.01 m    1.02 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm    578 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    434 um    -5 mm    811 um    578 keV    0 eV  6.34 mm  6.34 mm      Target  Transportation
 
    2  6.94 cm    -80 cm  61.6 cm    578 keV    0 eV  1.01 m    1.01 m    OutOfWorld  Transportation
 
</pre>
 
 
 
;and
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -2.2 mm      0 eV      0 eV    2.8 mm  79.8 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  2(Rest= 0,Along= 0,Post= 2), #SpawnTotal=  2 ---------------
 
    :      0 fm      0 fm  -2.2 mm  1.91 MeV        1
 
    :      0 fm      0 fm  -2.2 mm  19.7 keV      232
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Th232[5594.3],  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -2.2 mm  19.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -560 um  -4.06 mm      5 mm  19.7 keV    0 eV  8.29 mm  8.29 mm      Target  Transportation
 
    2    -6 mm  -4.35 cm    7.5 cm  19.7 keV    0 eV  8.06 cm  8.88 cm        World  Transportation
 
    3  -7.69 mm  -5.58 cm  9.67 cm  19.7 keV    0 eV    2.5 cm  11.4 cm      Tracker  StepLimiter
 
    4  -9.37 mm  -6.81 cm  11.8 cm  19.7 keV    0 eV    2.5 cm  13.9 cm      Tracker  StepLimiter
 
    5  -1.03 cm  -7.5 cm  13.1 cm  19.7 keV    0 eV  1.42 cm  15.3 cm      Tracker  Transportation
 
    6  -6.23 cm  -45.2 cm    80 cm  19.7 keV    0 eV    77 cm  92.3 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -2.2 mm  1.91 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    689 um      5 mm  2.07 mm  1.91 MeV    0 eV  6.61 mm  6.61 mm      Target  Transportation
 
    2    11 cm    80 cm  68.1 cm  1.91 MeV    0 eV  1.05 m    1.06 m    OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
;In addition to the fission event:
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm    1.2 mm      0 eV      0 eV    6.2 mm  80.1 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  7(Rest= 0,Along= 0,Post= 7), #SpawnTotal=  7 ---------------
 
    :      0 fm      0 fm    1.2 mm    138 keV        1
 
    :      0 fm      0 fm    1.2 mm  2.37 MeV        1
 
    :      0 fm      0 fm    1.2 mm  78.3 MeV      123
 
    :      0 fm      0 fm    1.2 mm  1.83 MeV        1
 
    :      0 fm      0 fm    1.2 mm  4.17 MeV        1
 
    :      0 fm      0 fm    1.2 mm    653 keV        1
 
    :      0 fm      0 fm    1.2 mm  89.1 MeV      105
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Mo105[14330.9],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  89.1 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm    442 um    1.9 mm  89.1 MeV    0 eV  5.07 mm  5.07 mm      Target  Transportation
 
    2    80 cm  7.07 cm  11.4 cm  89.1 MeV    0 eV  80.6 cm  81.1 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm    653 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm  1.85 mm    719 um    653 keV    0 eV  5.35 mm  5.35 mm      Target  Transportation
 
    2    80 cm  29.7 cm  -7.55 cm    653 keV    0 eV  85.1 cm  85.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  4.17 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  4.44 mm  1.75 mm    -5 mm  4.17 MeV    0 eV  7.82 mm  7.82 mm      Target  Transportation
 
    2  57.4 cm  22.6 cm    -80 cm  4.17 MeV    0 eV      1 m    1.01 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  1.83 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  2.07 mm  3.07 mm      5 mm  1.83 MeV    0 eV  5.31 mm  5.31 mm      Target  Transportation
 
    2  4.01 cm  5.96 cm    7.5 cm  1.83 MeV    0 eV  9.77 cm  10.3 cm        World  Transportation
 
    3  5.05 cm    7.5 cm  9.41 cm  1.83 MeV    0 eV  2.66 cm    13 cm      Tracker  Transportation
 
    4  43.4 cm  64.5 cm    80 cm  1.83 MeV    0 eV  98.5 cm  1.11 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Cd123[14330.9],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  78.3 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    -5 mm  -1.83 mm    485 um  78.3 MeV    0 eV  5.37 mm  5.37 mm      Target  Transportation
 
    2    -80 cm  -29.3 cm  -11.3 cm  78.3 MeV    0 eV  85.4 cm    86 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  2.37 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    -5 mm    328 um  1.75 mm  2.37 MeV    0 eV  5.04 mm  5.04 mm      Target  Transportation
 
    2    -80 cm  5.25 cm  8.89 cm  2.37 MeV    0 eV  80.1 cm  80.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm    138 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm  2.66 mm  3.68 mm    138 keV    0 eV  6.18 mm  6.18 mm      Target  Transportation
 
    2    80 cm  42.6 cm  39.9 cm    138 keV    0 eV  98.3 cm    99 cm  OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
 
 
;Voltage Measurements when the THGEM resistor is 30 Mohm in [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] fig.3:
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|<math> V_{Input} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM1} </math> (kV) <math>\pm</math> 0.001 || <math> V_{THGEM2} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM3} </math> (kV)<math>\pm</math> 0.001 
+
|7345|| 08/18/14 ||  06:39:23 || 14:17:58 || || open || on ||0.0128  || 0.1 flow rate, triple coincidence
 
|-
 
|-
| 1.058  ||0.410 || 0.403 || 0.394 
+
|7355|| 08/18/14 ||  16:03:29 ||  19:59:51|| || open || off || 75  || 0.1 flow rate, EM 2.82 kV , CATH 3.37kV(-50V), CAEN translator is used
 
|-
 
|-
| 2.057    || 0.798 || 0.780 || 0.763
+
|7356|| 08/18/14 ||  20:03:05|| 20:07:58 || || open || on || 2k  || 0.1 flow rate, noise measurement
 
|-
 
|-
|3.020 || 1.169 || 1.145 || 1.120
+
|7357|| 08/18/14 || 20:08:43 || 22:48:22 |||| open || on || 142  || 0.1 flow rate
 
|-
 
|-
| 4.021 || 1.557 || 1.524 || 1.492
+
|7358|| 08/18-19/14 ||  22:53:13 || 10:52:44|| || open || on || 0.0082  || 0.1 flow rate , triple coincidence
 
|-
 
|-
|5.066  ||1.961 ||1.920 ||1.879
+
|7359|| 08/19/14 ||  10:55:49|| 10:59:52 || || open || on || 2.1k || 0.1 flow rate , noise measurement
 
|-
 
|-
| 6.080 || 2.353 ||2.302 ||2.253
+
 
 +
|7360|| 08/19/14 |11:00:38|| 14:26:38|| || open || on || 156|| 0.1 flow rate  noise measurement with  1 Hz sampling
 
|-
 
|-
|7.041  ||2.721 ||2.662  || 2.607
+
|7361|| 08/19/14 ||  14:40:49||18:25:00 || open || on || 0 || 0.1 flow rate  with  1 Hz sampling (AND gate)
 
|-
 
|-
|8.094  ||3.122 ||3.058 || 2.989
+
|7362|| 08/19/14 ||  18:33:15||  18:38:54|| ||open || on ||1.5k || 0.1 flow rate triple coinc.(OR)
 
|-
 
|-
|9.065  || 3.495 || 3.420 || 3.346
+
|7363|| 08/19-20/14 ||  18:39:46||  13:39:45|| ||open || on ||0.0081  || 0.1 flow rate triple coinc.(OR)
 
|-
 
|-
|10.120  ||3.896 ||3.814 || 3.733
+
|7364|| 08/20/14 ||  13:44:56|| 13:50:57 ||  ||open || off || 1.55k || 0.1 flow rate noise measurements, 2.87, 3.42kV for GEM and CATH
 
|-
 
|-
|11.135  || 4.281 ||4.192 || 4.097
+
|7367|| 08/20/14 ||  15:08:27 || 16:49:37 ||  ||open || off || 86 || 0.1 flow rate, 2.87, 3.42kV for GEM and CATH
 
|-
 
|-
|12.032  ||4.619 || 4.520 || 4.422
+
|7368|| 08/20/14 ||  16:53:42||  17:15:49||  ||open || on || 154  || 0.1 flow rate
 
|-
 
|-
|13.017  || 4.992 || 4.883 || 4.760
+
|7369|| 08/20/14 || 17:17:39|| 20:28:43||  ||open || off || 86  || 0.1 flow rate, spec. amplifier decreased from 100 to 50
|}
 
 
 
=01/11/10=
 
;HV circuit:
 
The table below shows the voltage measurements for the HV circuit represented by fig.3 [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] with THGEM-resistor is 180 Mohm.
 
The input voltage choice is based on the maximum voltage capability of the available power supplies in LDS until the date above.
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|<math> V_{Input} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM1} </math> (kV) <math>\pm</math> 0.001 || <math> V_{THGEM2} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM3} </math> (kV)<math>\pm</math> 0.001 
+
|7479|| 08/27/14 ||  10:02:21|| 10:42:09||  ||open || on || 64  || 0.1 flow rate,
 
|-
 
|-
| 1.030 ||0.087 || 0.800 || 0.790 
+
|7480|| 08/27/14 ||  10:46:18||  14:17:22 || ||open || off || 11  || 0.1 flow rate,
 
|-
 
|-
| 4.005    || 3.158 || 3.100 || 3.066
+
|7481|| 08/27/14 ||  14:19:33 || 14:43:39 || ||close || on || 78  || 0.1 flow rate,
 
|-
 
|-
|5.010 || 3.949 || 3.887 || 3.836
+
|7488|| 08/27/14 ||  16:16:37 || 16:48:53 || || open|| on || 86  || 0.1 flow rate,
 
|-
 
|-
|8.009* || 6.300 || 6.214 || 6.136
+
|7491|| 08/27/14 ||  18:09:27 || 18:59:05 || || open|| on || 86  || 0.1 flow rate,
 
|}
 
|}
 
  *Expected a higher voltage measurements for THGEM resistors closer to the voltage of source if THGEM resistors are replaced by resistor of 250-300 Mohm.
 
 
=1/22/10=
 
 
 
1.) Paste practice
 
 
The paste was applied on a G-10 that has 1 mm hole diameter and 0.5mm and 1mm pitch. After curing the paste made a solid surface on the top on the G-10 surface without penetrating through the holes or dropping on the carrier.
 
 
insert picture
 
 
 
insert resistance measurements
 
 
insert voltage difference measurements
 
 
 
Next paste practice.
 
 
Apply paste to PC board without drilling holes.  Try to get copper layer for connections.  Don't worry about PC board thickness
 
 
 
Order FR4 boards clad on both sides with copper that are the same thickness as the ones in the paper.
 
 
 
2.) HV distributions
 
 
What happens when a 30 mv pulse is pushed onto the ground plane.  Do you see it through the capacitor?
 
 
3.) GEANT4 simulation:
 
 
A fission fragment distribution from Th-232 was observed.  Now working on X-section.
 
  
  
A new physics model was installed and is working called "G4HadronFission".
+
==Peak sensing measurements by 08/28/14==
  
The goal is to compare this model with "G4Inelastic".
+
Peak sensning measurements for GEM were recorded in the time between 8:00 am to 9:44am for shutter open as the following
  
Which one reproduces cross section?
 
  
Table with data from measurements.
 
 
http://www.nndc.bnl.gov/exfor/endf.htm
 
 
=02/12/10=
 
;ED-7100 picture
 
 
[[Image: PC_Board_7100.jpeg | 100 px]]
 
 
 
insert resistance measurements
 
 
insert voltage difference measurements
 
 
 
Next paste practice.
 
 
Apply paste to PC board without drilling holes.  Try to get copper layer for connections.  Don't worry about PC board thickness
 
 
 
;Order FR4:
 
Order FR4 boards clad on both sides with copper that are the same thickness as the ones in the paper.
 
There are the following kinds of laminates that we can use for the TGEM:
 
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Laminate || Dielectric Constant (</math> (kV)<math>\pm</math> 0.05) || The Least Thickness (mm)
+
| Source On|| Source Off
 
|-
 
|-
| RO4003C  ||   3.38      || 0.101
+
|7507 || 7506
 
|-
 
|-
| RO4350B  ||   3.48      || 0.203
+
|7509 || 7508
 
|-
 
|-
| RO3035 ||   3.5  ||    0.13
+
 
 +
|7511 || 7510
 
|-
 
|-
| RO3003 ||   3.00(<math>\pm</math> 0.04)  ||  0.13
+
|7513 || 7512
 
|-
 
|-
| RO3006 ||  6.15(<math>\pm</math> 0.15)    ||    0.13
+
 
|-
+
|7515 || 7514
| RO3010 ||  10.2(<math>\pm</math> 0.3)    ||   0.13
 
 
|-
 
|-
| RO4360  ||   6.15 (<math>\pm</math> 0.15)      || 0.203
+
|7517 || 7516
 
|-
 
|-
| Theta ||    3.9-4.01(without uncertainty)      || 0.056
 
|}
 
It is possible also to have copper on the chosen laminate with 17 um thickness. the laminate thckness last update is available on the following:[[File:Standard Thicknesses, Tolerances and Panel Sizes.pdf]]
 
 
Based on a call done by 02/11/10:
 
 
1- The company can provide us with 30 mil (0.76 mm) and 40 mil (1.02 mm) FR4 thickness plates.
 
 
2- The minimum copper thickness is 17um which is equivalent to 1/2 oz.
 
 
3-The prices are as the following
 
  
{| border="1" cellpadding="4"
+
|7519 || 7518
 
|-
 
|-
| FR4-Thickness ||Copper thickness(um)  || price per 12"X18" plate(305X457mm) (us $) || expected laminate series
+
|7521 || 7520
|-
 
|30 mil (0.76 mm) || 17  || 70.17 || 3003
 
|-
 
|40 mil (1.02 mm) || 17  || 99.01 || 3003
 
|-
 
|                || 9    ||  99.01  || 5880
 
 
|}
 
|}
  
Please note:
 
  
1- Expected change in pricing whenever you call for order but this is just an estimation.
+
[[File:unknownbootle_measurements_06_13.png | 300px]][[File:unknownbootle_measurements_14_21.png | 300px ]]
  
2- The price of the copper double sided is the same as one-sided ones ??
 
  
3- the order would be ready within 2 weeks from the date of order.
+
Different output for each run when Peak sensing is used to measure the charge, what is noticed that the charge is different from one  run to another, but all the runs show that the amount of charge collected is bigger when the shutter is open with the source on it except for run 7511. By comparing all the runs, As the shutter is open, the maximum charge is collected by channel number 800, as the source is on the detector, the collected charge reached up to channel 1000 at most.
  
4- for non-standard thickness, the customer is expected to buy the whole yeild. (usually is 6 plates but not always!)
+
Measuring the data started by 8 am, the noise rate increased so it increased the event rate from 30s to 80s event/s, and it did not decrease until now (Thur. 15:36 08/28/14). all module wiring were checked but without any result. I am using the 90/10 Ar/CO2 bottle as hope to take some measurements but when the noise level goes down maybe this evening to repeat the same measuremnts.
  
5- the minimum order is 150$.
+
The following reference shows a change in collected charge as the tenperature changes <ref>"Discrimination of nuclear recoils from alpha particles with superheated liquids" F Aubin et al 2008 New J. Phys. 10 103017 </ref>
  
6- Copper single sided or double sided is possible depending on the thickness of the chosen laminate.
+
[[File:temp_signal_effect.jpg | 300px]]
  
For ordering :
+
=Flow rate and figures=
call Melody on (480-961-8249) who is a busy lady as described (do not be upset if you have to leave a voicemail)
 
or call 800-227-6437 for any additional information on their products.
 
  
;Important:
+
;03 flow rate
  
The order can not be by individuals, the faster way is to make under the university name in a formal paper which determines exactly what we want, Melody is helpful and ready to answer any question such that we will sure 100% of every small detail.
+
[[File: 03_sourceOn.png | 450 px]]
 +
[[File: 03_sourceoff.png | 450 px]]
 +
[[File: 03_openOn_off_sub.png | 450 px]]
 +
;02 flow rate
  
2.) HV distributions
+
[[File: 02_sourceOn.png | 150 px]]
 +
[[File:02_sourceoff.png | 150 px]]
 +
[[File: 02_openOn_off_sub.png | 150 px]]
  
What happens when a 30 mv pulse is pushed onto the ground plane.  Do you see it through the capacitor?
+
01 flow rate
  
;GEANT4 simulation:
+
[[File: 01_sourceOn.png | 150 px]]
 +
[[File:01_sourceoff.png | 150 px]]
  
there are two classes that can simulate the Th-232 fission process,
+
= Common Start Common Stop exchange=
  
a- G4InelasticProcess . [[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#01.2F05.2F10]]
+
Edit the file
b- G4HardronFission. the following should be added to the ExN02PhysicsList.cc :
 
  
A fission fragment distribution from Th-232 was observed.  Now working on X-section.
+
cd /usr/local/coda/2.5/readoutlist/v1495trigPAT/
 
 
<pre>
 
 
 
G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
 
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
G4HadronFissionProcess *theFissionProcess = new G4HadronFissionProcess();
 
        theFissionProcess->AddDataSet(new G4NeutronHPFissionData());
 
        theFissionProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(theFissionProcess);
 
</pre>
 
 
 
To compare this model with "G4Inelastic", the simulation is run for just a 100 neutrons, ExN02SteppingVerbose.cc can distinguish between a reaction of one fission fragment (dominant) or two fission fragments(used for calculating the fission cross section for Th-232).
 
 
 
[[Image: Fiss_Inel.jpg | 250 px]]
 
 
 
The previous figure is based on the following calculation.[[File:xsection_cal.txt]]
 
 
 
Which one reproduces cross section?
 
 
 
Table with data from measurements.
 
 
 
http://www.nndc.bnl.gov/exfor/endf.htm
 
the website helps to generate graphs depending on the data-libraries stored. after you choose your element you can plot and add more data to your plot.
 
the previous plot for the Th-232 is generated by the same website.[[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#12.2F14.2F09]]
 
 
 
=2/16/10=
 
  
 +
as the following:
 +
 +
for common start comment:
 +
/* c775CommonStop(TDC_ID);
  
1.) Cross section from Simulation
+
for common stop uncomment:
 +
  c775CommonStop(TDC_ID);
  
Th-232 is a cube 10 x 10 x 10 cm^3.
+
=Ionization xsections for different particles emitted from U-233=
  
The number of incident particles per Area = <math>\rho_{Th-232} V /A = \rho_{Th-232} L_{target} </math>
+
; Photons
  
<math>\rho_{Th-232} =  11.72 g/cm^3 </math>
+
[[File: photoabosorption_Ar.png | 150 px]]
 +
[[File: photoabosorption_CO2.png | 150 px]]
 +
[[File: photoabosorption_Ar_CO2.png | 150 px]]
  
<math>\Rightarrow 11.72 g/cm^3  \frac{1 mol}{232.04 g}\frac{ 6.02 \times 10^{23} Atoms}{mole} = 3.0\times 10^{22}</math>
+
Ref. : http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
  
X-sect = <math>\frac{\mbox{number of observed fission events}}{\mbox{ number of incident neutrons}3.0\times 10^{22} atoms/cm^3  \times 10 cm} = 3.3 \times 10^{-24} cm^2 \mbox{number of observed fission events} \times \left ( \frac{1 barn}{10^{-24} cm^2} \right )/\mbox{ number of incident neutrons}</math>
 
:<math>= 3.3  \frac{\mbox{number of observed fission events}}{\mbox{ number of incident neutrons}} </math>barns
 
  
2.) Output a file with fission fragments events containing energy and momentum for each fragment as well as incident neutron energy
+
;Electrons
  
 +
[[File: electron_ion_Ar.png | 150 px]]
  
3.) Check on status of Additive T
+
Ref. :
  
 +
Data Nucl. Data Tables 54 (1993) 75  [[File: electron_ionization_Ar.pdf]]
  
4.) Order FR4 to make GEm foils
 
  
FR4 thickness is 1 mm = 30 mil with a standard copper thickness 17 microns ( half ounce). = model 3003
+
;Alpha Particles
  
call  Melody on (480-961-8249) who is a busy lady as described (do not be upset if you have to leave a voicemail) or call 800-227-6437 for any additional information on their products.
+
[[File: alpha_ionization.png | 150 px]]
  
$200 , 30 mil , 3003 series 1/2 x 1/2 oz
+
Ref. :
  
5.) Insert table with power through resisters in HV circuit. This will determine if the resisters can sustain the voltage.  Afterword , short the GEM foil connection and determine change in power requirements.
+
http://www.exphys.jku.at/Kshells/
  
6.)Measure voltage difference for several points across front and back of board coated with resistive paste.
+
Data Nucl. Data Tables 54 (1993) 75
  
=02/22/10=
+
=Coincidence Measurements for GEM and the Plastic scintillator=  
  
;Th-Fission Simulation
+
;Coincidence Measurement for the scintillator PMT's without shielding and without source
 
 
The following table represents the fission products and their physical parameters for Th-fission process that covers the range 22-12 MeV.
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|Neutron Kinetic Energy (MeV) ||Atomic Number || Atomic Mass || Kinetic Energy(MeV) || <math> P_x </math> (N/s) || <math> P_y </math> ||<math> P_z </math>
+
|Date || Time || No. of Counts (counts)|| Count rate (counts/min)  
|-
 
| 22 ||    47  ||    118 ||    79.313||  1047.05 ||-2848.8 ||-2866.72
 
|-
 
|  22 || 43    ||  105  ||  91.7065  ||-80.3602      ||  3421.92 || -2493.52         
 
|-
 
|  20 ||    47 ||    117  ||  80.9944 || -3948.01  ||      -1374.8 || -413.714
 
|-
 
|  20 ||    47 ||    117  ||  80.9944 || -3948.01  ||      -1374.8 || -413.714
 
|-
 
| 17  || 43    ||  108  ||  85.0977 || 2021.82 ||  3575.92 ||  491.487
 
|-
 
| 17    || 47    ||  119    ||  78.2587 || 3372.27 || -2402.48 ||  -446.444     
 
 
|-
 
|-
| 15 || 43    || 110 ||   83.1197 || 3527.28 ||-2094.98    ||    -442.242     
+
|07/09/14 || 1066 || 659005 || 618
 
|-
 
|-
|15  || 47      || 118 ||   81.6169 || -2762.52 ||      -3144.03  ||      -645.413     
+
|07/10/14 || 538 || 368974 || 686
 
|-
 
|-
| 12  ||43  ||    110  ||  83.6868 || 233.754  ||-2554.97    ||  -3249.9
 
|-
 
| 12 ||47    ||  118 ||    80.4392 || -417.031      ||  2668.67|| 3221.85
 
|}
 
  
Events look good now make a text file with all information about event on one line (neutronEin,Afrag1,Afrag2,Zfrag1,Zfrag2, Efrag1,Efrag2,Pxfrag1,Pxfrag2...)
 
  
;HV-circuit Pwer Measurements
 
  
{| border="1" cellpadding="4"
 
|-
 
|Voltage (kV)( <math> \pm </math> 0.001) || Current(<math> \pm </math> 1 uA) || Power (W)
 
|-
 
|0.500 ||    8    || 0.0013
 
|-
 
|1.000  || 14 || 0.0039
 
|-
 
|1.500 || 21 ||0.0088
 
|-
 
|2.000 || 27 || 0.0146
 
|-
 
|2.500 || 33 || 0.0218
 
|-
 
|3.000 || 40 || 0.0320
 
|-
 
|3.500 || 46 || 0.0423
 
|-
 
|4.000 || 53 || 0.0562
 
|-
 
|4.500 || 60 || 0.0720
 
|-
 
|5.000 || 66 || 0.0871
 
|-
 
|6.000 || 80 || 0.1280
 
|-
 
|7.000 || 91 || 0.1656
 
|-
 
|8.000 || 104 || 0.2163
 
 
|}
 
|}
  
Availability
 
2.5W  : 200 Mohm [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM108F-200M-ND],  300 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM108F-300M-ND], 400 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM108FE-500M-ND] , 500 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM108FE-500M-ND]
 
 
=03/05/10=
 
A 1"X1" laminate was shorted to around 1kV after following the preparing procedure below. The difference in voltage between the two surfaces is  869 V over all the paste area (I tried to make it as thin as possible and had the whole free copper free covered with a little contact to the copper frame), the board starts to spark when the voltage raised up to 2 kV.
 
 
<pre>
 
I would suspect that the short is due to the copper at the outside edge of the laminate. 
 
You should smooth the surface using sandpaper.  Perhaps we may even need to etch the
 
outer edge copper away from the edge.
 
</pre>
 
  
Yes, That was the reason, I removed the copper close to the edge, I succeeded to to reach 5k without sparking. I am now in process to repeat the experiment but the copper on the edge will be removed by the etching solution leaving just a little frame for connection.
 
  
;3000series laminate preparing procedure:
+
;Triple coincidence Measurement for the scintillator PMT's shielded and without source
1- Get a laminate with a desired dimensions etched by copper etchant solution after covering part of it to form a copper frame.
 
  
2- Paste the ED-7100 to free free copper area with a little contact with the frame.
+
Triple coincidence among the 2 PMT's and the GEM detector is measured using coincidence module caberra 2144 and ortec 778 counter, count rate is 0.3+_ 0.03 Hz. However, the rate was zero before shielding.
  
3- Cure the paste.
+
The following pics show The GEM output with triple coincidence signal, it is observed that different GEM peaks coincide with the triple signal, which shows that adding the shielding contaminates the neutron signal.
  
4- Short the laminate with a power source.
 
  
=03/09/10=
+
[[File: GEM_triple_smallpeak.png | 150 px]]
 +
[[File: GEM_triple_bigpeak.png | 150 px]]
 +
[[File: GEM_triple_twopeaks.png | 150 px]]
  
;HV circuit
+
=Coincidence Measurements for the Plastic scintillator after shielding=
  
The TGEM-plate was connected to the circuit, the source voltage was 1kV, but still the current is passing through the circuit where <math> R_{TGEM} = 180 \; M\Omega </math>.
+
; Without source
  
1.) Insert Fission Fragment plots for different neutron energies.
+
The plastic scintillator count rate before shielding and without source was in average 12 +_ 1 Hz, lead is added to the GEM and to the plastic scintillator which did not change the rate of the coincidence for the plastic scintillator  . Neither closing  the box door with lead nor adding lead to the top of the box  did  make any change in the number of counts for the plastic scintillator.
  
2.) Run simulations for neutron energies between 1 and 20 MeV, 1 MeV steps.
 
  
3) Plot X-sect.
+
;With a source
  
4.) Construct PCB GEM cards and insert into HV network.  Measure Current and Voltage to determine power.
+
=Background count rate=
  
 
5.) Drill 5 holes into one of the GEM cards and determine voltage for sparks.
 
 
;Thorioum like material
 
 
An email is sent to Dr.Patricia (Patricia.Paviet-Hartmann@unlv.edu) about a Thorium like materially physically and chemically, she suggested to use Cerium oxide(IV). I contacted chemistry material shop they said there is but it is very little, a call is needed to Mark to make an order.
 
 
safety datasheet [http://www.americanelements.com/ceox.html]
 
 
;RF-Connectors and adapters
 
 
The best prices founded on [http://www.rfparts.com/connectors.html]
 
Please look at the top of the blue box, there is a line where you can find what they offer.
 
=03/30/10=
 
;HV Circuit
 
 
1.) Using the new resistance 300 Mohm the current still runs throught the circuit.
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|<math>V_{source} (kV \pm 0.001)</math>  || <math>I_{source}(\mu A \pm 1)</math>  ||<math> V_{THGEM1}(kV \pm 0.001)</math> (no 4.7 M resistor) ||<math> V_{THGEM}(kV \pm 0.001) </math>
+
|Date || Time || PSD_e (counts)||  PSD_e (counts/min) || LED (low disctrinimation)(counts)||LED (low disctrinimation)(counts/min)|| LED (high disctrinimation) (counts)|| LED (high disctrinimation) (counts/min)
 
|-
 
|-
|   1.000  || 10    || 0.220 ||  0.220
+
|07/01/14 || 1166 || 56671 ||  49 || 2936748 || 2519 || 10 || 0.009
|-
+
|-  
|   2.000  ||   18  || 0.493 || 0.440
+
|07/01/14 || 231 || 10529 ||  || 572657 ||  || 1542 ||  
|-
 
|   3.000  ||    27||  0.734|| 0.654
 
|-
 
|   4.000  ||   36 ||  0.983|| 0.874
 
|-
 
|   5.000 ||   45 ||   (higher than 1.1kV)||1.084
 
|}
 
 
 
The difference between the 3rd column and 4th column measurements is one of THGEM1 has a 4.7 Mohm resistor disconnected.
 
 
2.) The design for for one of the THGEM circuit lines is created by eagle,the bottom picture shows only the board within only the available space (3cm X 13cm). Unfortunately the space for the ciruit board that is available now is not enough, a new cavity will be engraved on the other side and its size is  big as 6cm X 20cm X enough height to havethe resistors inside.
 
  
[[File:THGEM-line_1.pdf]]
 
  
;Paste and the new laminate:
+
|}
the paste is applied on the laminate by etching all the copper on both side leaving a copper frame with 0.2cm width only away from  edge 0.5cm. Successes achieved in following :
 
  
a) Sharpie perminent is the best for covering the copper to keep it on the desired shape on the laminate.
+
= data graphs=
  
b) No sparking on the on the laminate surface (without holes) that is etched and covered with the paste unless the voltage is higher that 9 kV.
 
  
Still the work is continuing to test the same laminate dimensions covered with the paste but with a certain number of holes on its surface.
+
;<math>S_{HLE}</math>
 
;Simulations:
 
A simulations were run for the TH-232 fission fragment using abla interface with hadron fission model and InelasticProcess model.
 
  
[[Image: Inelastic.png | 250 px]] [[Image: fission.png | 250 px]]
 
  
The two models are giving the same results.
+
[[File: B_pdaily_counts.png | 150 px]]
  
=04/09/10=
+
The above graph represents the change in the count rate of B_p, as the shutter is open (green) and as it is closed (red), the error bars get smaller since each point represents the average of two sets of daily measurements, in addition to, changing the PS discriminator's level after the second measurement.
;Sparking Test
 
A new laminate is cut and covered by resistive paste, a number of holes are created in pattern close to that of THGEM (but the distances are not the same among the holes as those in the pattern). The test led to the following conclusions:
 
  
1- The laminate passed 3kV, it started to spark after that value since the design has some defects, a perfect design by the CNC-machines will help to pass this value easily.
 
  
2-The distances among the holes is very important, even after applying the resistive paste, the further from each other is the better to avoid sparking.
+
;<math>S_{PSD}</math>
  
3- Adding Cerium to the paste has not any effect on the paste resistivity.
 
  
4-The new laminate is softer than the the G-10 that was used before, attention to not to bend it specially after the design, the holes will make it easily damaged under a little strong hand pressure on any side, for a better efficiency, the surface needs to be flat.
+
[[File: S_pdaily_counts.png | 150 px]]
  
=04/20/10=
+
The above graph has the same legend as the one for B_p, error bars increase for some data when the shutter is open, since one or more of the daily measurements has a higher number of counts because of U-233(4)'s spentaneous fission. (the number of counts is close to the number of counts as the shutter is open and the source is on).
  
1.) order HV boards ( a.) print out full scale version and check fit, b.) determine places to mill, c.) check max size of PCboard sheet)
 
  
2.) HV test copper GEM PCboards. apply paste to reduce sparking
+
Small=<math>S_{PSD} - S_{PSDE}</math>
  
3.) Run GEANT4 programs on all available computers
+
=Testing GEM Experiment  test 10/23/13=
  
4.) Dr. Brey has U-238, can we have it and destroy it?
+
The GEM detector was tested for signal and discharge as the voltage of the cathode and HV-circuit divider is 3.3 kV and 2.7 kV successively.
  
5.) Solution for making more TGEMs.
+
The GEM detector signal is observed as it used to work before. the pictures below show the signal detected as the shutter is open and as it is close.
  
  a.) Design in CAD and ship to CNC place?
 
  b.) apply paste before or after drilling?  (Th-232 doped paste is a contamination hazard.)
 
  c.) Paste application method (Printer or brushes)
 
  
  
 +
{| border="1" cellpadding="4"
 +
|-
 +
| shutter close ||  [[File: GEM_close_1.png | 40 px]]|| [[File: GEM_close_2.png | 40 px]]
 +
|-
 +
| shutter open || [[ File:GEM_open_1.png | 40 px ]]|| [[File: GEM_open_2.png | 40 px]] || [[File: GEM_open_3.png | 40 px]]|| [[File: GEM_open_4.png | 40 px]]
 +
|}
  
 +
=THGEM#9 Counting Experiment  test 1/4/13=
  
=05/4/10=
 
  
1.) order HV boards
+
[[THGEM#9 Counting Experiment]]
  
( a.) print out full scale version and check fit,
+
=GEM HV-divider circuit=
  
Done, waiting for Dr. Forest to inspect
 
  
b.) determine places to mill,
+
GEM HV-divider circuit in shown in the figure, measurements were recorded for for top and bottom voltage of each preamplifier.  
  
currently have a milled area for HV which is 10cm  x 3 cm.  We need to create a 13 x 8  cm area to hold the above design.
+
<center>[[Image:GEM_HV_Dist_Net.jpg | 100px]]</center>
  
c.) check max size of PCboard sheet)
 
  
 +
The table below shows value of the voltage on each  preamplifier's side relative to ground.
  
  
2.) HV test copper GEM PCboards. apply paste to reduce sparking
+
{| border="1" cellpadding="4"
 +
|-
 +
| <math> V_{source} \pm 1 </math>  || <math> V_{G1T} \pm 1 </math> || <math> V_{G1B} \pm 1 </math>|| <math> \Delta V_1 \pm 1 </math>  || <math> V_{G2T} \pm 1 </math> || <math> V_{G2B} \pm 1 </math>|| <math> \Delta V_2 \pm 1</math> || <math> V_{G3T} \pm 1 </math> || <math> V_{G3B} \pm 1 </math> || <math> \Delta V_3 \pm 1 </math>
 +
|-
 +
| 2550 || 2579 ||  2259 ||304 || 1671|| 1394 || 279 ||  818|| 570 ||245 
 +
|-
 +
| 2600 || 2630 ||  2303 ||310 || 1704|| 1421 || 285 ||834|| 581 || 250
 +
|-
 +
| 2650 || 2680 || 2348 || 316|| 1737||  1449  || 290 || 850|| 592 || 255
 +
|-
 +
| 2700 || 2731 || 2393 ||322 || 1770|| 1476 ||296 ||866|| 603 || 260
 +
|-
 +
| 2750 || 2781 ||  2373|| 328 || 1803|| 1503 || 302 ||882|| 614 ||264
 +
|-
 +
| 2800 || 2832 ||  2482|| 332 || 1836|| 1530|| 307 || 898|| 625 || 269
  
Machine 4 mini-TGEMs. 
 
  
  
3.) Run GEANT4 programs on all available computers
+
|}
 
 
put G4 runs on Brems
 
 
 
 
 
4.) Dr. Brey has U-238, can we have it and destroy it?
 
 
 
 
 
 
 
5.) Solution for making more TGEMs.
 
 
 
  a.) Design in CAD and ship to CNC place?
 
 
 
Free CAD drawing exists
 
 
 
  b.) apply paste before or after drilling?  (Th-232 doped paste is a contamination hazard.)
 
 
 
Paste then drill.  Need to take care of radioactive waste.
 
 
 
  c.) Paste application method (Printer or brushes)
 
 
 
 
 
  Order Ink Jet printer which will work with DAQ machine (Unix) then practice.
 
 
 
=05/18/10=
 
1.) Finish laying out HV design.
 
 
 
currently have a milled area for HV which is 10cm  x 3 cm.  We need to create a 13 x 8  cm area to hold the above design.
 
 
 
a.) check max size of PCboard sheet)
 
 
 
maybe 11" x 18"  we can get HV board on there no problem.  Now optimize number of boards per 11" x 18" PC board.
 
 
 
b.) Insert picture in wiki with paper representing PCboard sizes layed on top of detector.
 
 
 
 
 
c.) Get some quotes
 
 
 
 
 
 
 
2.) Machine 4 mini-TGEMs. 
 
 
 
check out moving drill press to mill machine table.
 
 
 
Build collar for drill bit.
 
 
 
3.) Run GEANT4 programs on all available computers
 
 
 
put G4 runs on Brems
 
 
 
http://wiki.iac.isu.edu/index.php/Running_With_Slurm  Batch jobs on Brehms
 
 
 
Install Ionization for ion fragments.
 
 
 
Plot current results using inca and DAQ computer with error bars.
 
 
 
 
 
4.) Dr. Brey has U-238, can we have it and destroy it?
 
 
 
 
 
 
 
5.) Solution for making more TGEMs.
 
 
 
Advanced Circuit did the copper TGEMS, will they do another coated with Th-232.  I doubt it.
 
 
 
  a.) Send CAD drawings to Advanced Cicuits for quotes.  A CAD design exists, need to quality control check it, can a vendor read it?  Remember copper only around perimeter.
 
 
 
  b.) Is there a vendor willing to drill. 
 
 
 
Paste then drill.  Need to take care of radioactive waste.
 
 
 
Need to develop method to apply doped paste to circuit board with holes.
 
 
 
Look for plastic plugs to go into the holes.
 
 
 
  c.) Paste application method (Printer or brushes)
 
 
 
 
 
  Order Ink Jet printer which will work with DAQ machine (Unix) then practice.
 
 
 
 
 
 
 
=4/06/10 (HV-circuit Design)(Ionization)=
 
1.) Finish laying out HV design.
 
 
 
currently have a milled area for HV which is 10cm  x 3 cm.  We need to create a 13 x 8  cm area to hold the above design.
 
 
 
 
 
a.) check max size of PCboard sheet)
 
 
 
maybe 11" x 18"  we can get HV board on there no problem.  Now optimize number of boards per 11" x 18" PC board.
 
 
 
b.) Insert picture in wiki with paper representing PCboard sizes layed on top of detector.
 
 
 
 
 
c.) Get some quotes
 
 
 
The PC-boards design is done, Gerber files are also created and submitted to the Board house (Circuit Graphics [http://circuitboard.com]). I am waiting for the price.
 
 
[[HV-Circuit For TGEM-Detector ]]
 
 
 
 
 
2.) Machine 4 mini-TGEMs. 
 
 
 
check out moving drill press to mill machine table.
 
 
 
Build collar for drill bit.
 
 
 
I made a visit to milling workshop in the university, they checked for me the milling machine in the beam lab, they advice me to check the utilities to check the electric connections (I asked Sanda to have maintenance request to check the connections), the machine now is ok and everything is working ok except for :
 
 
 
1- Electric lever key that takes the table up and down needs to be replaced.
 
 
 
2- The drill has a strange sound when it runs slow, but it is good as it runs fast.
 
 
 
3- The data reader is not working (important for small displacements).
 
 
 
In the utilities Department there is a technician (Paul (Dee) Rasmussen x2694 ) who used to do all the maintenance for the CNC and milling machines the milling lab, I asked the department to submit a maintenance request to check and try to fix the above in our machine. (an email is sent to you describes what is needed to go further in this).
 
 
 
I borrowed an adapter to catch very small drill bit, it works manually to avoid breaking the bit. Also I visited General products (tools shop) to buy 0.4 mm drill bit and an adapter to catch it .
 
I tried more than once to use this drill bit to get holes on TGEM plate, it is working good but there are still some difficulties in the displacements, I hoping the situation will be much better after fixing the data reader.
 
 
 
==Bridgeport Series I Milling Machine==
 
  
Brian Denny at  Asi Machine & Supply - www.asimachine.com (208) 888-9236 will come by and give us a cost repair estimate when he or a fellow worker is in the area.
 
  
Brian Bishop is the Asi rep which travels to ISU frequently (one a month).  His Cell number is 208-573-1765.   The best repair tactic is to remove the head and ship it to Boise.  Or if not in a hurry, wait for Brian to come back to town and he will take it back with him.
+
The source voltage means the voltage value on the 4-channel CAEN N470 display. (suppose to be equal to the voltage of the top GEM1).
  
3.) Run GEANT4 programs on all available computers
+
the values are going to be an input for ANSYS which is going to simulate the electric field for each source voltage separately,  ANSYS' output files will be an input for Garfield to simulate the electron multiplication by the triple GEM.
  
put G4 runs on Brems
+
= GEM alpha-Beta detector counter=
 +
[[GEM Alpha-Beta detector counter]]
  
http://wiki.iac.isu.edu/index.php/Running_With_Slurm  Batch jobs on Brehms
+
=GEM gain data graphs and GEM Calibration in LDS=
  
Install Ionization for ion fragments.
+
==GEM Detector==
  
Find a measurement to compare the ionization of the gas to.  A light or heavy ion traveling through as gas chamber liberates ? electrons by ionization.
+
[[GEM performance QDC data graphs]]
  
 +
[[Calibrating GEM detector]]
  
GEANT4 is running with the ionization, the chamber material now is Ar 90 \percent with  10 \percent CO2.
 
  
Both  ExN02DetectorConstruction.cc and ExN02PhysicsList.cc  were edited as the following:
+
==Electronics Flow Chart==
  
<pre>
+
[[File:LDS_electronics_flow_chart.png |200px]]
To add ArCO2 mixture:
 
  
G4Material* ArCO2=new G4Material("ArCO2",density,ncomponents=2);
 
ArCO2->AddMaterial(Ar,fractionmass=90*perCent);
 
ArCO2->AddMaterial(CO2 ,fractionmass=10*perCent);
 
  
To track the fission fragments:
+
==GEM Detector and Scintillator==
  
else if( particleName == "alpha" ||
+
[[GEM and Sci. data and measuurements]]
      particleName == "He3" ||
 
      particleName == "GenericIon" ) {
 
      //Ions
 
      //pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
 
    pmanager->AddProcess(new G4ionIonisation,      -1, 2, 2);
 
}
 
</pre>
 
  
 +
=GEM gain data graphs and GEM Calibration at the IAC=
  
The text file contains:
+
Haitham may only alter the QDC's dual timer and a CFD for the QDC in the IAC DAQ.
  
<pre>
+
  Haitham may only add signals to the NIM->ECL translator
En    FF1A  FF1Z  FF1P px  py  pz  FF1Range chargeFF2A FF2Z FF2P px py  pz  FF2Range charge
 
1      107  43  0  0  -0  -0  3.15298  43  121  47  0  0  0  0  2.97138  47 
 
1      121  47  0  0  -0  0  2.97565  47  107  43  0  -0  0  -0  3.10325  43 
 
1      97  38  0  0  0  0  3.63527  38  133  52  0  0  0  -0  2.85036  52 
 
1      89  35  0  0  0  0  3.95635  35  141  55  0  -0  -0  -0  2.78145  55 
 
1      90  35  0  0  0  0  3.94515  35  140  55  0  0  -0  -0  2.7865  55 
 
1      95  38  0  -0  -0  -0  3.67254  38  135  52  0  -0  -0  0  2.88728  52 
 
1      119  47  0  0  0  0  2.98623  47  109  43  0  0  0  -0  3.17545  43 
 
1      93  37  0  0  -0  0  3.78905  37  137  53  0  0  -0  -0  2.8152  53 
 
1      129  50  0  -0  -0  0  2.92961  50  101  40  0  0  0  -0  3.46852  40 
 
1      91  36  0  -0  0  0  3.8446  36  138  54  0  0  -0  -0  2.80753  54 
 
1      99  40  0  -0  0  0  3.52113  40  131  50  0  -0  0  -0  2.96041  50 
 
1      89  35  0  -0  -0  -0  3.86209  35  141  55  0  0  -0  0  2.7893  55 
 
1      106  42  0  -0  -0  -0  3.16644  42  123  48  0  -0  -0  0  2.96203  48 
 
1      93  37  0  0  0  0  3.65556  37  137  53  0  0  0  -0  2.81346  53 
 
</pre>
 
  
[[Ionization and Number of the the electrons produced]]
+
Haitham is not allowed to change any cables that are used for the PAA setup
  
I am now running on brems to get the range for each fragments in the gaseous mixture described for 4MeV,8MeV,12MeV,16MeV and 20MeV. I am thinking to get a graph for different fragments ranges as function of the atomic number with error bars.
+
;Summary
  
Brian told me that I am still running the processes in sequence, not becuase of any mistake I did but looks he needs to update the system and work on that point.
+
The detector is installed in the IAC after modifications took place in the detector design.
  
Submitting the 50 jobs together failed if I have script that contains all the commands for submitting 50 jobs. Brian and I will work on this to get it done after the system runs my jobs in parallel.
+
These modifications are:
  
Plot current results using inca and DAQ computer with error bars.
+
1- The detector kipton window's area  increased to the same size of the GEM cards( 10X10 cm)
  
[[Image: G_xsect.png | 250 px]]
+
2- The distance of the cathode from the first GEM increased up to 1.2 cm. previously the distance was about 3.5 mm. (No change in GEM's distances 2.8mm, or the readout 0.5 mm)
  
 +
Increasing the drift distance demands an increase in cathode potential to maintain the same values of the electric field in the old setup.
  
 +
3- The detector is installed in a wooden box, in addition to a plastic scintillator which was placed to cover part of the detector window.
  
  
E, Sim X-sect, Measured X-sect, Ratio
+
[[GEM performance data graphs]]
  
4.) Dr. Brey has U-238, can we have it and destroy it?
 
  
 +
==Electronics Flow Chart==
  
 +
[[File:IAC_electronics_flow_chart.png |200px]]
  
5.) Solution for making more TGEMs.
 
  
Advanced Circuit did the copper TGEMS, will they do another coated with Th-232.  I doubt it.  
+
[[File:IAC_n.png |200px]]
  
  a.) Send CAD drawings to Advanced Cicuits for quotes.  A CAD design exists, need to quality control check it, can a vendor read it?  Remember copper only around perimeter.
+
=U-233 fission x-section data and fission yield=
  
  b.) Is there a vendor willing to drill.
+
[[File:U-233_fissionxsection_0.01-100MeV.gif |200px]]
 +
[[File:U-233_fissionxsection_fullenergyrange.gif |200px]]
  
Paste then drill.  Need to take care of radioactive waste.
+
[[File:U-233_fissionxyield_percent.png |200px]]
  
I am in process to contact "General product", which cares about milling and CNC machines, I talked to them on the phone to take an appointment(there here in Pocatello) then I will give a report summarizes the meeting and what they do for us.
 
  
General Products, 3661 Pole line Rd. , tel: 208-237-2390.
 
  
Need to develop method to apply doped paste to circuit board with holes.
+
== What is the energy distribution of Beta, Photon and alpha from U-233==
  
Look for plastic plugs to go into the holes.
+
===Alpha ===
  
  c.) Paste application method (Printer or brushes)
 
 
 
  Order Ink Jet printer which will work with DAQ machine (Unix) then practice.
 
 
I am still in process to find an appropriate printer, most of the surface screen printers that I found are for cloth, or even has a special paste that you you should use for the printer. I am also keeping an eye on the website you sent me [http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers] and there are a new printer there that it might be a choice but I did not get the answers for the questions I sent yet.
 
 
;Info about Linx 4100:
 
 
To answer your questions, this system will come with a manual, and it uses 0.5 liter cleaning solvent and ink cartridges.
 
 
The three common ink types are fast dry, which is a methyl ethyl ketone solvent base, ethanol, which is an ethyl alcohol base, and water, which is a simple water base. Please note that the cleaning solvent must match the ink being used.
 
 
Also, this system has its own central printing unit, which includes the ink system, controls and display, and does not have the ability to be connected to an external computer; the only ports on it are an external alarm connector and photocell & shaft encoder sockets.
 
 
;Info about AMI Presco 465 Compact Screen Printer:
 
 
This system will come with a manual, and it uses thick film paste-like ink that must be introduced using a plastic spatula.
 
 
Further, the squeegee blade in this system should be buttered with some of this ink to eliminate friction between the blade and the screen on the initial pass.
 
 
Also, this system has no interface for external PC control, and utilizes onboard microprocessor PLC control.
 
 
=06/15/10=
 
 
==Quote for HV-PCBoard==
 
the following link for the gerber files sent to the vendor.
 
[http://inca.iac.isu.edu/~abdel]
 
 
Board has been ordered will arrive Monday June 21, 2010
 
 
== Detector machined==
 
 
The detector has been machined to house the new HV boards.
 
 
==called Lloyd==
 
 
Ultimatum has been given by upper management to get rid of the material. 
 
 
Call Lloyd (Mobile: 865-206-9663) late Thursday if you don't hear from him.  He is gone for 3 weeks after next friday.
 
 
== TGEM manufacturing==
 
 
Collet for Milling machine ordered
 
 
$54 was paid for a collet which can hold a 1/64" drill bit to drill TGEM holes into FR4.  We have at least 2 drill bits.
 
 
 
General Products has been asked to give a quote for producing 10 x 10 cm sized Thick GEM foils.  The will build a frame holder for the TGEM boards to hold them while they CNC machine.  The boards are thin and flexible needed support from the frame.  General products is willing to talk about how they can mill a Thorium doped TGEM.
 
 
==Simulating the ionization of the fission fragments==
 
 
=== Simulated -vs- Experiment X-sect results===
 
Take ratio of measured X-sect/Simulated X-sect and put it in a table
 
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|Energy (MeV) || Experimental fission cross section(mb) ||Simulated fission cross section(mb) || (Experimental fission cross section/Simulated fission cross section)
+
| nuclide || Energy (MeV)
|-
 
|1 ||  <math>  1\pm0.3  </math> ||<math> 14 \pm 0.9</math> || 0.0700
 
 
|-
 
|-
|2    ||<math> 124 \pm 1 </math> ||<math> 54 \pm 2 </math>|| 2.20
+
| Pb-213  || <span style="color:red"> 8.4</span>  
 
|-
 
|-
|3 ||     <math>  143\pm 2 </math>  ||<math> 59 \pm 1.5</math> || 2.24
+
| Bi-213 || 5.9
 
|-
 
|-
|4 ||  <math>    154\pm 4 </math> ||<math> 63 \pm 1.75</math> || 2.44
+
|At-217 ||6.3  
 
|-
 
|-
|||   <math>  153 \pm 5 </math>||<math> 64 \pm 0.2</math> ||  2.3
+
|Fr-221 || 6.3
 
|-
 
|-
|6    ||<math> 150\pm 1 </math> ||<math> 88 \pm 2</math>||  1.7
+
|Th-229 ||  <span style="color:green">4.85 </span> (alpha spectrum, highest counts for is 4.85 MeV)
|-
+
|}
|7  || <math>  148\pm 13 </math>  ||<math> 122 \pm 1</math> || 1.2
+
 
|-
+
===Gamma===
|8 ||  <math>     143\pm 26 </math>||<math> 143 \pm 3</math> || 1
+
 
|-
+
Gamma distribution for U-233 and its daughters are in metioned in details in the documents , [[File:u233_day_gamma.pdf]] <ref>http://www.radiochemistry.org/periodictable/gamma_spectra , Wed. 04/10/2013</ref>
|9 ||  <math>    151\pm 32 </math>||<math> 155 \pm 3</math> || 0.97
+
 
|-
+
The energy range of the emitted gamma is shown in the following table .
|10 ||  <math>  159\pm 48 </math>||<math> 160 \pm 2</math> || 0.99
+
 
|-
+
{| border="1" cellpadding="4"
|11    ||<math>    161 \pm 63 </math> ||<math> 159 \pm 3</math> || 1.03
 
 
|-
 
|-
|12      ||<math> 162 \pm 72</math> ||<math> 170 \pm 2</math>|| 0.95
+
| nuclide || Energy Minimum || Energy Maximum (keV)
 +
|-|
 +
| U-233 || 25 || <span style="color:red"> 1,119</span>  
 
|-
 
|-
|13      ||<math>  171 \pm 69  </math>  ||<math> 192 \pm 2</math> || 0.89
+
| Ra-225 || 40 || 40
 
|-
 
|-
|14    ||<math> 171 \pm 73 </math> ||<math> 217 \pm 3</math> || 0.79
+
|Ac-225 || <span style="color:green">10.5 </span> || 758.9
 
|-
 
|-
|15      ||<math>  169 \pm 78 </math>|| <math>234 \pm 3</math> || 0.72
+
|Fr-221 || 96.8 || 410.7
 
|-
 
|-
|16  ||<math>      171 \pm 75 </math>||<math> 245 \pm 2</math> || 0.60
+
|At-217 || 140 || 593.1
 
|-
 
|-
|17  ||<math>  168 \pm 80</math> || <math>248 \pm 3</math> || 0.68
+
|Bi-213 || 323.81 || <span style="color:red">1,119.4 </span>
|-
 
|18  ||<math>  166 \pm 80</math>|| <math>250 \pm 3</math> || 0.66
 
|-
 
|19    ||<math>  168 \pm 77</math> || <math>263 \pm 3 </math>|| 0.64
 
|-
 
|20      ||<math> 166\pm 77 </math>  ||<math> 309 \pm 3 </math>|| 0.54
 
 
|}
 
|}
  
The error estimation is based on the following fission xsection graph:
 
  
[[File: Th_232_reference.png|250 px]]
+
===Beta===
 
+
Find original source for Fission model in GEANT4 and make your own copy which you place in you subdirectory.
+
Beta particles are  emitted mainly from U-233 daughters as shown in the figure <ref> http://itu.jrc.ec.europa.eu/index.php?id=204, Wed. 04/10/2013 </ref>
 
 
;ENDF abbreviations :
 
 
 
(n,f): neutron fission reaction, cross section is considering the probability for 1st chance , 2nd chance, ..., n chance fission for the target.
 
 
 
(n,f '): 1st chance neutron fission reaction
 
 
 
For our simulation we consider only the fission reaction of parent ID = 1, so only we are considering first chance fission reaction only.
 
 
 
[[File:Sim_Exp.xsetion.png|250 px]]
 
 
 
=== Fragment ionization===
 
 
 
Please look at the following link : [http://wiki.iac.isu.edu/index.php/Ionization_and_Number_of_the_the_electrons_produced][[Ionization_and_Number_of_the_the_electrons_produced]]
 
 
 
;The Visit To General Products:
 
the visit was successful in a way that they understood what we want to do, I sent a cad-file, and they sadi that there are able to do it.
 
Also I talked ot him about Th-coated THGEM-plate drilling, he said he will be able basically to do it but he needs to know how are we going to do it and the procedures that we are going to take as radiation protection.
 
He will email me with a quote for the first step, but still he needs to think more about Th-coated ones.
 
 
 
 
 
=06/28/10=
 
 
 
 
 
==HV board stuffed==
 
 
 
The resistors were soldered onto the HV boards.
 
 
 
Below is a picture of the circuit and a measurement of the Voltage acccorss each TGEM as a function of the total voltage.
 
 
 
 
 
Now put ONE TGEM card onto the HV circuit and determine the voltage which causes a discharge in Air.
 
 
 
== Th-232==
 
 
 
Lloyd has found someone to pay for shipping us the Th-232 BUT Dr. Wells has offered 10 g of U-238 for us to use.  Dr. Forest will try to meet with him this week to facilitate the transfer. U-238 has 3 times for cross section then Th-232 when neutron energy is between 10 and 15 MeV.
 
 
 
Alan Hunt may still be interested in getting the 1.7 kg material.
 
 
 
== TGEM Machining==
 
 
 
The 76-drill bit seems to not produce holes in a straight line on the milling machine even though larger drill bit (1/32) did make straight lines.  We suspect the drill bit deflects too much when pressure is applied for drilling the hole.
 
 
 
Try to "hole punch"  the material before drilling so the drill bit does not move around on the material before it has a chance to start drilling the material.
 
 
 
==Simulation==
 
 
 
Brems appears to be up try an submit jobs to fill in the X-sect energy gaps.
 
 
 
Then try one energy for U-238.
 
 
 
;Cross section from Simulation
 
 
 
U-238 is a cube 1 x 1 x 1 cm^3.
 
 
 
The number of incident particles per Area = <math>\rho_{Th-232} V /A = \rho_{Th-232} L_{target} </math>
 
 
 
<math>\rho_{Th-232} =  19.1 g/cm^3 </math>
 
 
 
<math>\Rightarrow 19.1 g/cm^3  \frac{1 mol}{238.029 g}\frac{ 6.02 \times 10^{23} Atoms}{mole} = 4.83 \times 10^{22}</math>
 
 
 
X-sect = <math>\frac{\mbox{number of observed fission events}}{\mbox{ number of incident neutrons}\times4.83\times 10^{22} atoms/cm^3  \times 1cm} = 2.07 \times 10^{-23} cm^2 \mbox{number of observed fission events} \times \left ( \frac{1 barn}{10^{-24} cm^2} \right )/\mbox{ number of incident neutrons}</math>
 
:<math>= 20.7 \frac{\mbox{number of observed fission events}}{\mbox{ number of incident neutrons}} </math>barns
 
 
 
[[File: U_238_fxsection_12MeV.png |250 px]]  [[File: U_238_nf_nf'_xsection.png |250 px]]
 
 
 
(target length was 1 cm)
 
 
 
 
 
 
 
 
 
Add errors to experimental data in table above.
 
 
 
=07/26/10=
 
The circuit board is populated and tested, it reaches now to 8 kV without sparking.
 
 
 
The old TGEM foil is also tested, it starts sparking when the voltage reached 400 V on it.
 
 
 
=08/1/2010=
 
 
 
;TGEM-foil Preparation:
 
 
 
FR4 is cut into 11x11 cm, the trial foil has 100 holes, the paste inside the area surrounded by copper (yellow) as in the figure.
 
 
 
[[File:model_copper.pdf |250]]
 
 
 
=8/10/2010=
 
 
 
1.) Machine 10 x 10 cm boards so we have 100 holes in a 1.3 x 1.3 cm square array centered on the 10 x 10 cm boards.
 
 
 
3 boards will have resistive paste and 2 will have no paste.
 
 
 
at $20 each we are expecting at least a $100 charge for milling the test boards.
 
 
 
1 10 cm x 10 cm board with a 3.5 mm wide copper outer trace has been made, 4 more are needed.
 
 
 
 
 
2.) Search for Panasonic connector samples continues
 
 
 
3.)U-238 articles reporting fission measurements on interlibrary loan.
 
 
 
 
 
 
 
=8/23/2010=
 
 
 
1.) 5 , 12 x 12 cm FR4 boards have been etched with a outer copper trace that is 3.5 mm wide.  3 of the boards have been coated with resistive paste.  The machine shop will drill 100 holes in each of the 4 boards and treat the 5th board as a spare.
 
 
 
Get a time estimate for drilling holes from Vendor.
 
 
 
Still waiting the quote. expected in the quote: *fixture price. *cost of drilling holes for 100 *cost for drilling all the holes in 10X10 cm *cost of labour
 
 
 
2.) Allied electronics may be willing to sell us 25 connectors.  WIP
 
 
 
Quote is sent, $167.88 each for min order of 25 and both connectors, 25 connector pairs for $350. 2-3 weeks delivery.
 
 
 
3.) Insert paper reference that you received here. 
 
 
 
[[File:Pankratov_fxsection_Th232_U233_U235_Np237_U238_5-37MeV.pdf]]
 
 
 
the over all accuracy in the measurements (f_x-section) in the range 5-27MeV was not less that 5 percent, but worse than 10 percent in the range 27-37 MeV.
 
 
 
Use data Thief to make your own version of Figure 6, with you simulation results overlayed, and legend includes reference.
 
 
 
The previous data measurements only seem high in the range 20-37 MeV (ref. [[File:Ignatyyuk_U238_nxsetion_upto150MeV.pdf]] page 5).
 
 
 
Also create Xmgrace version of U-238 X-sect with your simulation result and the red line average from above overlayed.
 
 
 
What is mistake for E=3 MeV U-238 simulation?
 
 
 
4.) Drill holes into the TGEM chamber to mount the HV boards
 
 
 
5.) Simulation Cross Section
 
 
 
What is the Format of the the cross-section files GEANT4 uses for Fission. 
 
 
 
There is not any information online about the format of the files, in addition there are not editable by users, still users can leave a request on the forum! [http://hypernews.slac.stanford.edu:5090/HyperNews/geant4/get/hadronprocess/1058.html]
 
  
 +
[[File:U-233_decay_beta_energy.jpg |200px]]
  
 +
U-233 -> Th-229, emitted alpha particles have energy of 4.8 MeV.
  
Are these files stored in
+
Insert energy distribution for Betas
  
  data/G4NDL3.13/Fission/CrossSection
+
The following table shows the negative beta emitter nuclides,their parent nuclides, and  their half lives:
  
looks that files are saved without any extension.
 
 
=8/30/2010=
 
 
1.) Vendor will likely be able to finish the drilling of 100 holes in 4 FR4 plates 2 weeks after the quote is accepted.  A fixture will need to be built to hold the FR4 boards in order to drill the holes at the same location on each board.
 
 
2.) Allied electronics may be willing to sell us 25 connectors.  WIP
 
 
Quote is sent, $167.88 each for min order of 25 and both connectors, 25 connector pairs for $350. 2-3 weeks delivery.
 
 
3.) Insert paper reference that you received here. 
 
 
[[File:Pankratov_fxsection_Th232_U233_U235_Np237_U238_5-37MeV.pdf]]
 
 
the over all accuracy in the measurements (f_x-section) in the range 5-27MeV was not less that 5 percent, but worse than 10 percent in the range 27-37 MeV.
 
 
Use data Thief to make your own version of Figure 6, with you simulation results overlayed, and legend includes reference.
 
 
The previous data measurements only seem high in the range 20-37 MeV (ref. [[File:Ignatyyuk_U238_nxsetion_upto150MeV.pdf]] page 5).
 
 
Also create Xmgrace version of U-238 X-sect with your simulation result and the red line average from above overlayed.
 
 
What is mistake for E=3 MeV U-238 simulation?  Number was from wrong file, pilot error.
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|[[File: U_238_xsection_ebars.png |250 px]]  ||      [[File: U_238_fxsection_12MeV.png |250 px]] || [[ File:ENDF_GEAN4_U238_fxsection.png |250 px]]
+
|Nuclides || energy (MeV) || half life
|}
 
 
 
 
 
 
4.) Drill holes into the TGEM chamber to mount the HV boards
 
 
 
not done, starts working together as soon as the plates ready.
 
 
 
5.) Simulation Cross Section
 
 
 
New simulation for U-238 under new conditions. but still the simulation is running
 
 
 
I changed the N02SteppingVerbose in a way that can record all fission fragments properties for the 1st, second and third fission reaction for a certain incident neutron energy:
 
 
 
    if(NumberOfFissionFragments>0  && fTrack->GetDefinition()->GetAtomicMass()<228  && fTrack->GetDefinition()->GetAtomicMass()>2 &&
 
    fTrack->GetCurrentStepNumber()==1 && (fTrack->GetParentID()==1 || fTrack->GetParentID()==2 || fTrack->GetParentID()==3))
 
=09/02/10=
 
 
 
;RETGEM Preparation:
 
 
 
TGEM plate is is prepared as the picture shows below, then covered with resistive paste.
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|[[File: THGEM_1.jpg |250 px]]  ||      [[File: THGEM_2.jpg |250 px]] || [[ File:  THGEM_3.jpg|250 px]]
+
| <math>Ra^{225} \rightarrow Ac^{225}</math> ||<span style="color:green">0.357 </span> || 14d.
|}
 
 
 
 
 
;Sparking Test:
 
 
 
A single TGEM plate was installed into the ionization chamber and a voltage was applied across the top and bottom of the plate.  Sparks were observed when the voltage difference between the top and bottom of the resistive plate reached 2.8 kV.  The sparks appeared to be localized to one of the holes.  I will take the plate out and try to clean the hole further by filing away resistive paste around the hole.  For comparison, the same foil didn't spark until a voltage difference of 7 kV was reached in air.  According to Figure 14 in  [[Media:Jinst8_02_p02012_THGEM_spark.pdf‎]] , a voltage difference of 1550 Volts was needed in the Double RTGEM configuration to achieve a gain less than 10^4.  Our goal is a gain of 10^6 using 3 RTGEM plates.  This suggests we should try to reach high voltage differences  of at least 2 kV on each plate without sparking.
 
 
 
 
 
 
 
Sparking test had been done as the detector have air, the highest source voltage recorded was 7 kV. The detector  filled with Ar-gas, the highest source voltage detected was 2.8 kV. There is a specific hole that the spark is on, then at around 5 kV it starts to spread around the hole.
 
 
 
An order of needle files will reach tomorrow, another sparking test will be done tomorrow after cleaning the holes and adding more paste.
 
 
 
Do not add more resistive paste yet.
 
 
 
 
 
Insert the density of copper and the density of the resistive paste here in the wiki.
 
 
 
=09/09/10=
 
 
 
;Densities
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| Material Name || ED-7100 || Copper   
+
|<math>Bi^{213} \rightarrow Po^{213}</math> || 1.426 || 46min.
 
|-
 
|-
| Density(g/cm3) || 1.2 g/cm3 (9.97lbs/gal)  || 8.92 g/cm3
+
|<math>Tl^{209} \rightarrow Pb^{209}</math> || <span style="color:red">1.981 </span> || 2.2 min.
|}
 
 
 
 
 
;Sparking Test
 
 
 
Sparking test is repeated again after cleaning the hole, cleaning by the new set of files is not effective, the same observation seen again without any improvement from last time.
 
 
 
;Cleaning method:
 
Using the chemicals for cleaning the small holes when the file size is not suitable is suggested by one of the companies.
 
 
 
 
 
email from MSCMetalworking.com - Robert <MSCMWtechteam@mscdirect.com> :
 
 
 
e have not heard of anyone making a file that small. Depending on how bad the burr is you might want to try this. Get a .019" DIA pin gage and some lapping compound and see if by spinning the pin in the hole with the compound that it will take care of the burr. Here are the MSC part numbers for the pin and compound.
 
78372166 [http://www1.mscdirect.com/CGI/GSDRVSM?PACACHE=000000153334342]
 
05652581 [http://www1.mscdirect.com/CGI/GSDRVSM?PACACHE=000000153334446]
 
 
 
;Ionization Simulation
 
 
 
A success in tracking an ionization and resultant electrons from the process is done using N03 edited to have an absorber of Ar-CO2 used mixture:
 
 
 
<pre>
 
Region <DefaultRegionForTheWorld> -- appears in <World> world volume
 
Root logical volume(s) : World
 
Pointers : G4VUserRegionInformation[0], G4UserLimits[0], G4FastSimulationManager[0], G4UserSteppingAction[0]
 
Materials : Galactic ArCO2
 
Production cuts :  gamma 1 mm    e- 1 mm    e+ 1 mm
 
 
 
========= Table of registered couples ==============================
 
 
 
Index : 0    used in the geometry : Yes    recalculation needed : No
 
Material : Galactic
 
Range cuts        :  gamma 1 mm    e- 1 mm    e+ 1 mm
 
Energy thresholds :  gamma 9.9e+02 eV    e- 9.9e+02 eV    e+ 9.9e+02 eV
 
Region(s) which use this couple :
 
    DefaultRegionForTheWorld
 
 
 
Index : 1    used in the geometry : Yes    recalculation needed : No
 
Material : ArCO2
 
Range cuts        :  gamma 1 mm    e- 1 mm    e+ 1 mm
 
Energy thresholds :  gamma 9.9e+02 eV    e- 9.9e+02 eV    e+ 9.9e+02 eV
 
Region(s) which use this couple :
 
    DefaultRegionForTheWorld
 
 
 
====================================================================
 
 
 
### Run 1 start.
 
Start Run processing.
 
 
 
---> Begin of event: 0
 
 
 
--------- Ranecu engine status ---------
 
Initial seed (index) = 0
 
Current couple of seeds = 814376083, 879723252
 
----------------------------------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = N14[0.0],  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0    -3 cm      0 fm      0 fm      7 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1   -2.5 cm      0 fm      0 fm      7 MeV2.73e-15 eV      5 mm      5 mm        World  Transportation
 
    2  -2.5 cm      0 fm      0 fm  6.96 MeV  39.8 keV  14.9 um  5.01 mm        ArCO2    ionIoni
 
    3  -2.5 cm  -2.46 Ang-5.07e+04 fm  6.92 MeV  33.2 keV  14.7 um  5.03 mm        ArCO2    ionIoni
 
    4  -2.5 cm  -2.87 Ang-5.84e+04 fm  6.92 MeV  5.5 keV  4.47 um  5.03 mm        ArCO2    ionIoni
 
    5  -2.5 cm  -2.88 Ang-5.93e+04 fm  6.92 MeV  73.7 eV  43.2 nm  5.03 mm        ArCO2    ionIoni
 
    6  -2.49 cm  -7.11 Ang -9.68 Ang  6.85 MeV  69.8 keV  23.1 um  5.06 mm        ArCO2    ionIoni
 
    7  -2.49 cm  -7.16 Ang -1.06 nm  6.84 MeV  6.9 keV  2.9 um  5.06 mm        ArCO2    ionIoni
 
    8  -2.49 cm  -1.19 nm  -1.73 nm  6.78 MeV  58.9 keV  22.2 um  5.08 mm        ArCO2    ionIoni
 
    9  -2.49 cm  -1.38 nm  -2.58 nm  6.73 MeV  47.2 keV  20.5 um    5.1 mm        ArCO2    ionIoni
 
  10  -2.49 cm  -1.82 nm  -5.11 nm  6.66 MeV  69.5 keV  42.2 um  5.15 mm        ArCO2    ionIoni
 
  11  -2.48 cm  -2.09 nm  -5.86 nm  6.63 MeV  31.2 keV  16.2 um  5.16 mm        ArCO2    ionIoni
 
  12  -2.48 cm  -2.41 nm  -6.52 nm    6.6 MeV  25.1 keV  13.4 um  5.17 mm        ArCO2    ionIoni
 
  13  -2.48 cm  -2.87 nm  -8.21 nm  6.52 MeV  84.5 keV  40.2 um  5.21 mm        ArCO2    ionIoni
 
  14  -2.47 cm  -3.24 nm  -12.3 nm  6.32 MeV  195 keV  78.5 um  5.29 mm        ArCO2    ionIoni
 
  15  -2.43 cm  -5.06 nm  -32.1 nm  5.55 MeV  769 keV  382 um  5.68 mm        ArCO2    ionIoni
 
  16  -2.4 cm  -6.78 nm  -50.7 nm  4.67 MeV  886 keV  360 um  6.04 mm        ArCO2    ionIoni
 
  17  -2.36 cm  -8.38 nm  -68.2 nm  3.82 MeV  845 keV  337 um  6.37 mm        ArCO2    ionIoni
 
  18  -2.33 cm  -9.89 nm  -84.6 nm  3.02 MeV  797 keV  317 um  6.69 mm        ArCO2    ionIoni
 
  19  -2.3 cm  -11.3 nm  -100 nm  2.25 MeV  773 keV  299 um  6.99 mm        ArCO2    ionIoni
 
  20  -2.27 cm  -12.7 nm  -115 nm  1.55 MeV  703 keV  285 um  7.27 mm        ArCO2    ionIoni
 
  21  -2.25 cm    -14 nm  -129 nm  1.03 MeV  513 keV  272 um  7.54 mm        ArCO2    ionIoni
 
  22  -2.22 cm  -15.2 nm  -143 nm    619 keV  415 keV  262 um  7.81 mm        ArCO2    ionIoni
 
  23  -2.19 cm  -16.4 nm  -155 nm    349 keV  270 keV  250 um  8.06 mm        ArCO2    ionIoni
 
  24  -2.17 cm  -17.5 nm  -168 nm    117 keV  232 keV  235 um  8.29 mm        ArCO2    ionIoni
 
  25  -2.15 cm  -18.5 nm  -178 nm      0 eV    117 keV  193 um  8.48 mm        ArCO2    ionIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 13,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.48 cm  -2.87 nm  -8.21 nm    998 eV      0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.48 cm  -1.27 um  1.81 um      0 eV    998 eV  57.4 um  57.4 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 12,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.48 cm  -2.41 nm  -6.52 nm      1 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.48 cm  -2.23 um  -1.32 um      0 eV      1 keV  57.8 um  57.8 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 11,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.48 cm  -2.09 nm  -5.86 nm  1.03 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.48 cm  1.19 um    568 nm      0 eV  1.03 keV  59.8 um  59.8 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 10,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.49 cm  -1.82 nm  -5.11 nm      1 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.48 cm  1.31 um  -2.62 um      0 eV      1 keV  57.7 um  57.7 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 9,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.49 cm  -1.38 nm  -2.58 nm    993 eV      0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.49 cm    224 nm    3.5 um      0 eV    993 eV    57 um    57 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.49 cm  -1.19 nm  -1.73 nm  1.01 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.49 cm  -2.39 um  2.17 um      0 eV  1.01 keV  58.5 um  58.5 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.49 cm  -7.16 Ang -1.06 nm    999 eV      0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.49 cm  3.77 um  -385 nm      0 eV    999 eV  57.5 um  57.5 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.49 cm  -7.11 Ang -9.68 Ang  1.01 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.49 cm  4.91 um  -7.92 um    658 eV    356 eV  19.7 um  19.7 um        ArCO2        msc
 
    2  -2.49 cm  12.8 um  -6.9 um      0 eV    658 eV  34.6 um  54.3 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.5 cm  -2.88 Ang-5.93e+04 fm  1.03 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.5 cm  -9.66 um  -402 nm    834 eV    193 eV  19.8 um  19.8 um        ArCO2        msc
 
    2  -2.5 cm  -9.32 um    10 um    584 eV    250 eV  19.8 um  39.7 um        ArCO2        msc
 
    3  -2.5 cm  -6.96 um  7.34 um      0 eV    584 eV  19.8 um  59.5 um        ArCO2        msc
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.5 cm  -2.87 Ang-5.84e+04 fm    992 eV      0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.5 cm  11.2 um  4.42 um    992 eV      0 eV  19.5 um  19.5 um        ArCO2        msc
 
    2  -2.5 cm  24.4 um  9.57 um    965 eV  26.6 eV  19.5 um  38.9 um        ArCO2        msc
 
    3  -2.5 cm  28.7 um  5.64 um    846 eV    119 eV  19.5 um  58.4 um        ArCO2        msc
 
    4  -2.5 cm  34.4 um  2.56 um    436 eV    410 eV  19.5 um  77.8 um        ArCO2        msc
 
    5  -2.5 cm  35.8 um  -153 nm  5.97 eV    430 eV  19.5 um  97.3 um        ArCO2        msc
 
    6  -2.5 cm  36.2 um  -774 nm      0 eV  5.97 eV  2.26 um  99.5 um        ArCO2      eIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.5 cm  -2.46 Ang-5.07e+04 fm  1.08 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.5 cm  -8.67 um  7.15 um    630 eV    445 eV  20.5 um  20.5 um        ArCO2        msc
 
    2  -2.5 cm  -9.31 um  11.5 um      0 eV    630 eV  20.5 um  41.1 um        ArCO2        msc
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = e-,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0  -2.5 cm      0 fm      0 fm  1.04 keV    0 eV      0 fm      0 fm        ArCO2    initStep
 
    1  -2.5 cm  2.01 um  10.8 um  1.02 keV  14.4 eV    20 um    20 um        ArCO2        msc
 
    2  -2.5 cm  -9.15 um  16.7 um    760 eV    262 eV    20 um    40 um        ArCO2        msc
 
    3  -2.5 cm  -22.9 um  18.9 um    380 eV    380 eV    20 um    60 um        ArCO2        msc
 
    4  -2.5 cm  -25.3 um  15.8 um      0 eV    380 eV    20 um  79.9 um        ArCO2        msc
 
---> End of event: 0
 
  Absorber: total energy:      7 MeV      total track length:    4.2 mm
 
        Gap: total energy:      0 eV        total track length:      0 fm
 
Run terminated.
 
Run Summary
 
  Number of events processed : 1
 
  User=0s Real=0.16s Sys=0.01s
 
 
 
--------------------End of Run------------------------------
 
 
 
mean Energy in Absorber : 7 MeV +- 0 eV
 
mean Energy in Gap      : 0 eV  +- 0 eV
 
 
 
mean trackLength in Absorber : 4.2 mm  +- 6.5e+03 fm
 
mean trackLength in Gap      : 0 fm  +- 0 fm
 
 
 
</pre>
 
 
 
Notes:
 
*It is not clear yet if there are other particles produced through the ion track. "G4ionIonisation" is the only process used.
 
 
 
*The absorber thickness will determine the ion maximum energy and the number of tracked electrons. so the fission fragments won't all share in the ionization but the ones have the appropriate energy (and mass).
 
 
 
 
 
=09/14/10=
 
 
 
==defaultCutValue==
 
 
 
Set defaultCutValue=1.0*mm in example N02 to see if you can get ionized electron tracking.
 
 
 
;U-fx-section Simulation:
 
 
 
The figures show the U-fxsection in case of counting the fragments from 1st fission reaction only and counting the fragments from fission reactions that follow the the 1st one.
 
 
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|   1st_2nd_3rd Fission        ||   1st_Fission 
+
|<math>Pb^{209} \rightarrow Bi^{209}</math> || 0.644 || 3.25h
 
|-
 
|-
|[[File:Fiss123.png |250 px]] ||[[File: U_238_fxsection_12MeV.png |250 px]]
+
|<math>Bi^{209}</math> || 1.893 || stable
 
|}
 
|}
  
Notes: the first figure shows an increase in the value of f-xsection when the incident neutron energy is 10 MeV or more, also the f-xsection is increasing when the energy is 20 MeV. So the first figure is closer to the experimental fission cross given by ENDF [[http://wiki.iac.isu.edu/index.php/File:U_238_xsection_ebars.png]].
+
==What is the energy distribution after the 1 mm FR4 shutter==
  
Overlay the above results onto the ENDF plot.
 
  
;TGEM Detector Plates :
+
=== electron shutter penetration===
  
10X10 holes 0.5mm diameter and 1.3mm center to center distance are going to be ready tomorrow. Sparking test results are going to be ready by the next meeting.
+
The energy distribution below represents the incidence electron on a 1 mm FR4 shutter.
  
 +
[[File:E_spectrum.png |90 px]]
  
=10/18/10=
+
graph of electron energy for electron penetrating shutter (did any not penetrate?, how many?)
  
Haithem's daily log report:
 
oles are dre
 
  
=10/19/10=
 
  
;New TGEM (HTTGEM_1)
 
  
Three HTTGEM_1 foils were manufactured and tested up to 3 kV in air.  The same foils would hold 2.2-2.3 kV when immersed ina 90/10 ArCO2 gas mixture.
+
photons below were produced by above incident electron?
 +
The energy distribution of photons was observed on the opposite side of the shutter
  
 +
[[File:Photon_spectrum.png |90 px]]
  
;The design of HTTGEM_1:
 
  
 +
Electrons (with least energy from U-233= 0.2 MeV) pass through the shutter have the energy distribution below.
  
Each HTGEM_1 is constructed using 0.5 mm thick copper clad FR4 plate that are 12 x 12 cm in size. The copper layer is 17 um thick. The copper is etched until a  2 mm thick border remains around the plate which will be used to apply a voltage between the top and bottom of the plate. The exposes FR4 is coated with the resistive paste ED-7100. Holes of diameter 0.5 mm (0.02") are drilled in a pattern as in the figure below. A rim of width 0.381 mm is made around each hole to separate the hole from surrounding resistive paste.  The hole pitch is 0.8 mm.
+
===alpha shutter penetration===
  
=Resistive paste thickness-mass calibration curve=
+
===photons===
  
;Aim
+
== Number of ions produced from Beta and Photon in ArCo2==
  
Studying the relationship between the mass and thickness of the resistive paste painted over 10X10 HTTGEM Foil.
+
EMTest10 is used to calculate the average number of ions (electrons) when a 101 beta of 1 MeV are fired in a world that contains ArCO2. (13.5 per primary electron).
  
;Experiment equipments and restrictions:
 
  
Accurate scale (<math> \pm 0.1 g </math>), SEM (scanning electron microscope).
+
[[File:SecondaryElectron_Energy_1Mevbeta.png |90 px]]
  
SEM sample's height limit  : 5 cm.
+
= The needed time to observe the GEM signal=
  
(Dr. David Peterson Assistant Professor in Anthropology,Research Scientist, Center for Archaeology, Materials and Applied Spectroscopy (CAMAS) , 157 Graveley Hall,Idaho State University)
+
In the case of triple GEM detector with a gas flow of 0.3 SCFH and 2650V and 2950V on GEM cards and cathode successively, a signal lower than the noise (of 16 mV and amplified twice) is observed at 770.0s +/- 0.1.
  
 +
The normal rate (8 MHz +/- 2 as measured by the oscilloscope) is observed after 952.9s +/- 0.1.
  
;Procedure:
+
=THGEM card tasks and tests=
  
Measuring the mass of Prepared samples of 0.5 thickness FR4 square plates with different surface areas as in the table below before and after painting the paste.
+
;New THGEM cards:
 
 
Studying the paste distribution and thickness under SEM.
 
 
 
;Experimental Data
 
 
 
{| border="1" cellpadding="4"
 
|-
 
|  Plate Surface area (cm^2) (length <math> \pm 0.1 cm </math> )        ||  mass (g)<math> \pm 0.1mg </math> before applying the paste || mass (g)<math> \pm 0.1mg </math> after applying the paste ||<math>\frac{mg}{cm^2}</math> ||notes
 
|-
 
|  1X1 ||  0.2627 || 0.2634 || 0.7|| paste on both sides
 
|-
 
| 2X2  || 0.9776 || 0.9793  || 0.4 || paste on both sides
 
|-
 
| 3X3  || 2.5074 || 2.5074 || 0 || paste on one side
 
|-
 
| 4X4  || 4.4923 || 4.4940  || || paste on one side
 
|-
 
| 5X5  || 7.3261 || 7.3250 || || paste on one side (paste is not uniform)
 
|}
 
  
 +
Two new fully machined cards are going to be tested in air and ArCH4, if they passes 2000 V potential bwtween the top and the bottom, then they are going to be installed in ArCh4 gas chamber.
  
 +
The older THGEM cards will have a high voltage enough to have one spark/min to clean impurities or surface defects.
  
;SEM Images
+
=GEM Signal after the latest modification on the fission chamber 07/01/13=
  
;2x2 sample
+
The signal of the detector is observed as the shutter is open and close.
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
| Image(a) ||Image(b) ||Image(c) ||
 
 
|-
 
|-
|[[File: 2X2.png |250 px]]|| [[File: 2X2_scale.png |250 px]] || [[File: 2X2_scale_zoom.png |250 px]]
+
| shutter close || [[File: GEM_close.jpg | 40 px]]|| [[File: GEM_close1.jpg | 40 px]]|| [[File: GEM_close2.jpg | 40 px]] || [[File: GEM_open.jpg | 40 px]]
|}
+
|-
 
+
| shutter open || [[ File:GEM_open_7_1.jpg | 40 px ]]
 
 
  
;4x4 sample
 
 
{| border="1" cellpadding="4"
 
|Image(1) ||Image(2) ||Image(3) ||Image(4) ||Image(5)
 
|-
 
|[[File:  4x4.png |250 px]]|| [[File: 4X4_scale.png |250 px]] || [[File: 4X4_scale_zoom.png |250 px]] || [[File: 4X4_3scale_zoom_001.png |250 px]] || [[File: 4X4_scale_zoom_002.png |250 px]]
 
 
|}
 
|}
  
  
 +
=GEM's signal testing when it a long cable is used=
  
 +
The GEM signal is tested when a long cable is used to transfer the signal to the oscilloscope as the shutter is open, and without the cable. Oscilloscope pictures shows an attenuation to the signal up to 30%.
  
;Conclusions and Next step(s)
+
   
 
 
-Using SEM is accurate enough to measure the paste thickness within few micros depending on the HFW (horixzontal field width) value (determined for each image).
 
 
 
- Highly recommended to use a high precision scale for measuring the mass variation accurately for each samples, not only for this experiment but also for the future samples that will contain a radioactive materials.
 
 
 
- Preferable size for the best image is 2x2 cm with clean edges and reference line.
 
 
 
- The resistive paste thickness changes from one sample to another and is not unform surface within the micrometer scale, for the 4x4 sample maxmimum value measured or the paste thickness was 120 um, and the minimum was 80 um. Successivly, the 2x2 sample paste thickness was measured with a maximum of 66.84 um and mimimum 49.17 um.
 
 
 
- The measurements were accurate whenever the paste is distiguished from the over flow of the paste on the edge, and as the charging on the sample is the least. (When the sample was inside the SEM-chamber, a beam of electrons hit the sample and created charged areas that soemtimes ddi not make the edge image sharp enough, this is clear by comparing image (4) and image (5)).
 
 
 
- New samples will be prepared, all have the 2x2 cm^2 area, with a small groove on the edge to have new images by SEM, each sample will have a cerain amount of the resistitive which will be determined accurately (hopefully) using a high presicion scale.
 
 
 
=Experiment Tasks timetable=
 
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Date    || Task || Notes
+
| Long bnc cable|| [[File: GEM_longcable1.jpg | 40 px]]|| [[File: GEM_longcable2.jpg | 40 px]]
|-
 
| 10/20/10  || Preparing the samples in different areas  || Done on time
 
 
|-
 
|-
| 10/21/10 || painting and curing the paste, measuring the mass before and after painting the paste || measuring the mass is accurate enough, even we borrow the scale and put it in table without anything around and without being moved just for the day of the taking the data or finding a more accurate one in a more stable measuring conditions.
+
Short bnc cable|| [[ File:GEM_shortcable.jpg | 40 px ]]
|-
 
|10/22/10 || studying the samples using SEM ||  CAMAS facility across Alvin Ricken Drive from the Idaho Accelerator Center, at 11:00 AM
 
|-
 
|10/28/10 || studying the 2x2 samples using SEM ||  CAMAS facility across Alvin Ricken Drive from the Idaho Accelerator Center, at 11:00 AM
 
|}
 
  
=RETGEM vs. THCOBRA =
 
 
{| border="1" cellpadding="4"
 
|-
 
|RETGEM    || THCOBRA
 
|-
 
|[[File: RETGEM_design.png |250 px]]|| [[File: THCOBRA_design.png |250 px]]
 
|-
 
|[[File: RETGEM_E-field.png |250 px]] || [[File: THCOBRA_E-field.png |250 px]]
 
|-
 
|[[File: REGEM_gain.png |250 px]]|| [[File: THCOBRA_gain.png |250 px]]
 
 
|}
 
|}
  
  
=Comparison ENDF evaluation of U-238 neutron fission xsection and GEANT4=
+
=Roy's detector infomation and measurements=
  
 +
U-233 metal deposited source is measured by Protean Instrument corporation gaseous detector, has a model number of WPC9450 (serial number: 0915723)and uses (P10) gas mixture, as shown below:
 +
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|[[File: U_238_xsection_ebars.png |250 px]]  ||      [[File: U_238_fxsection_12MeV.png |250 px]] || [[ File:ENDF_GEAN4_U238_fxsection.png |250 px]]
+
| Shutter position || Alpha particles /min.|| Beta particles /min.
|}
 
 
 
INTERNATIONAL EVALUATION OF NEUTRON CROSS-SECTION STANDARDS, INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 2007 [[File:U238-xsection.pdf]]
 
 
 
;absolute f_xsection in the table 7.1 p.91
 
 
 
 
 
{| border="1" cellpadding="4"
 
|-
 
|Ref. number    || inxn || data description || author || citation || notes 
 
|-(f
 
|809 || 238U(n,f)|| Absolute ||  G. Winkler et al. || 91Jülich (1991) 514 || the paper represents f_xsection ratio measurements of U_238 to Al_27, Na_24, Fe_56, Mn_56 * found in library QC770 N742 1992)
 
|-
 
|810 || 238U(n,f)|| Absolute ||K. Merla et al. || 91Jülich (1991) 510 || * The paper represents f_xsection ratio measurements of U_238, U_235 , Np_237, and Pu_239 for 4.45 MeV, 8.46 MeV, 18.8 MeV * very accurate description for the experiment details and through the figures and the tables * found in library QC770 N742 1992)
 
 
|-
 
|-
|877 ||238U(n,f) ||Absolute ||I.M. Kuks et al. ||At. Energy 30 (1971) 55 ||*measured f_xsection U_238 fission for 2.5 MeV Neutrons
+
| Open || 6879 || 900
 
|-
 
|-
|860 || 238U(n,f) || Absolute || N.N. Flerov et al.|| At. Energy 5 (1958) 657|| *title : antinutrino , Mean number of neutrons emitted in fission of U235 and U238 by 14-Mev neutrons, Mean number of neutrons emitted in fission of U235 and U238 by 14-Mev neutrons
+
| Close || 1 || 38
 
|}
 
|}
  
=Done In April (edited by 04/30/10)=
+
The source was in a plate of a diameter of 16 cm which was exposed to to the sensitive part of the detector of a height of 2-3 mm.
1.)Testing the new laminate with random holes after applying the resistive paste on both sides. Also, the trial of applying the paste  was done, 0.1 inch brush is used for that to avoid covering the holes with the paste. the following procedure were taken:
 
  
a- Voltage is applied on the the foil to check the first sparking place.
+
The activity  of the source is calculated based on the solid angle <math> \frac {A \times W}{4\pi} </math>
  
b- Applying the paste carefully on the area between the holes with very small quantities.
+
where '''A''' is the count per second
 +
and '''W''' is the detector solid angle.
  
;Result:
+
For the previous measurement, the solid angle is almost <math>2\pi </math>, so the the actvity of the source is twice the measured value in count/second.
  
a) Applying the paste shifts the sparking area to next neighboring one, so looks this will lead us to cover all the areas between the holes to kill the sparks.
 
  
b)A need to keep the foil under voltage to keep tracking of the sparks which lead unfortunately led to loss the voltage between the two copper layers.
+
=IAC experiment producing neutrons=
  
Even a drop of paste got stuck in one of the holes(which has low possibility since I cleaned all the paste applied very well), or the two layers are no longer isolated from each other!
+
One of the IAC experiments produces neutrons, the neutron spectrum from Tungsten target  is simulated  outside and inside water (moderator) as shown in the figure below
 
 
  
2.)Final touches on the HV-circuit are done, diagrams are done by eagle with Gerber files, the chamber is ready for redesigning.
+
[[File:moderator_nspect.png | 70 px]]
  
3.)Running Th-232 fission simulation without ionization on inca and daq1. Energies 1-9MeV (inca) and 19-22 MeV(daq1)  will be done by today(04/30/10).  
+
In the simulation above , They are interested in close distances to the Tungsten target inside the water container, it is 1 ft cubed container and is made of aluminium and covered polyester.
  
4.)Tracking the process to get Th-232, contacting other vendors for radioactive isotopes, trying to get low cost ones.
+
[[File:exp_setup.png | 70 px]]
  
=Done in June (edited by 07/09/10)=
+
=References=
  
1.)The design for the THGEM-HV circuit is submitted to the board house.
 
  
2.) Preparing the lab for a making samples and testing the THGEM foil. Preparation includes fixing the milling machine, and finding a vendor to provide the FR4 of thickness 1 mm, coated with 17 um copper from both sides. the size of the plate should be minimum 11X 11cm to fit the inside of THGEM-detector.
+
==THGEM design==
  
3.)  Finding a vendor to make THGEM foil : making 0.5 mm holes in certain pattern described in a CAD-file.
+
THGEM#9
  
4.) One of THGEM-foil is going to be covered by Th-232, a sample of Cerium (an stable element from the same group has close to TH-232 in physical properites) was used to test the mixing process with the paste.
+
[[Media:Shalem_MSthesis_march2005.pdf]]
 
 
5.) Running the simulation using GEANT4 to calculate the fission cross for Th-232.
 
 
 
6.) U-238 is going to be provided, it is going to be mixed with paste as in the same procedure done by Cerium to compare the detector characteristics with one based on Th-232.
 
 
 
7.) Practicing repairing process for GEM-detector with Tamar.
 
;Results:
 
 
 
a.) Improving the design of PC-board to hold up a voltage up to 10 kV without any sparking or short, also to include Geiger-mode APD circuit part  if the idea get approved.
 
 
 
[[File:Direct observation of avalanche scintillations in a THGEM-based two-phase Ar avalanche detector using Geiger-mode APD.pdf]]
 
  
  
b.) The milling machine was sent to a repair shop in Boise, expected to start working by the end of next week from the date above.
+
[[Media:Raz_Alon_MSthesis_Dec2007.pdf]]
  
c.) Still looking for a vendor to provide copper double clad FR4 with the same properties mentioned above.
+
==Electric field Simulation==
  
d.)We got a Quote from a vendor to THGEM-foil but still we are waiting another two of them to compare, also checking if the  vendor  is able to deal with ones that has the radioactive materials.
+
;Rim size dependence
  
e.) Simulation using GEANt4 needs to be improved compared with the experimental fission cross section provided by ENDF-data by creating a new ENDF-file to be a reference for GEANT4 for the Th-232 fission cross.
+
[[ file: THGEM_Efield_simulation.pdf]]
  
f.) To avoid accumulation of radioactive wastes, Nd (a stable element from the same group of U-238) will be mixed with the paste.
 
  
g.) Simulation for U-238 fission cross section started by 12 MeV energy and gave a  0.7b .
 
  
h.) Practicing on GEM gave an idea about required steps to finish THGEM-detector.
+
;2010 THGEM design(s):
  
==AFCRD Reports==
+
[[ file: THGEM_2009_design_gas_efficiency.pdf]]
  
;June
 
  
*Uranium Oxide has been chosen to dope the THGEM detector's resistive paste.  Procedures are being developed to apply the dopant.
 
*A HV distribution board has been designed for the detector and will be procured by the end of July.
 
*The THGEM detector's ionization vessel has been machined to accommodate the above HV board.
 
 
;July
 
 
*A HV distribution board has been constructed and tested to sustain high voltages up to 9 kV.
 
*5 FR4 boards have been etched.  Three boards were coated with resistive paste without dopant.  4 boards have been sent out for machining the 100 precision holes for preamplification.
 
 
 
 
;August
 
 
*A set of 20 holes were machined in one of the FR4 boards etched last month in order to test for HV breakdown while waiting for the remaining FR4 boards to be machined by a vendor.
 
*A HV test of the above board showed a voltage breakdown at 2800 Volts when the board is immersed the detectors Argon C02 ionization gas.  Other groups have shown that a high voltage of 1550 Volts was sufficient to operate similar detectors.  The changes made to the board for this project should not impact the HV specification of 1550 Volts.  The additional Voltage which is possible with our boards will serve to increase the detector gain.
 
 
=Done in July (edited by 07/09/10)=
 
 
A GEANT4 simulation of the 232Th(n,f) cross section from threshold to 20 MeV showed an increase with incident neutron energy but under-predicted the experimental results by a factor of 3 when the incident neutron energy was below 7 MeV.  A simulation of 238U(n,f) under-predicted experiment by a factor of 2 for neutron energies below 5 MeV but was consistent with experiment above 5 MeV.
 
 
 
 
= Th-232 and U-238 Activity in mCi=
 
General information:
 
 
{| border="1" cellpadding="4"
 
|-
 
|Physical properties || U-238  || Th-232
 
|-
 
| Half life in years|| 4.468 X 10^9  || 1.405 X 10^10
 
|-
 
|Decay rate per second || 4.91 X 10^-18 || 1.56 X 10^ -18
 
|-
 
| Molar Mass g/mol || 238.02891 || 232.0381
 
|-
 
| Activity of 2 kg in mCi || 0.68 || 0.22 
 
|}
 
 
Avogadro's number is 6.0221 X 10^23 /mol
 
 
1 Ci = 3.7 X 10^10 disintegration/ second
 
 
<math>2 \times 10^3 g \times \frac{1 mol}{238.03 g} \times \frac{6 \times 10^{23} atoms}{mol} \times \frac{decay}{4.4 \times 10^{9} years} \times \frac{yr}{365\times 24 \times 3600 sec} \frac{1 Ci}{3.7 \times 10^{10} decays/sec} \equiv 0.98 mCi</math>
 
 
<math> \ Half Life \times \ Decay Rate = ln2 </math>
 
 
 
<math>2 \times 10^3 g \times \frac{1 mol}{238.03 g} \times \frac{6 \times 10^{23} atoms}{mol} \times \frac{ ln2\times \ decay}{4.4 \times 10^{9} years} \times \frac{yr}{365\times 24 \times 3600 sec} \frac{1 Ci}{3.7 \times 10^{10} decays/sec} \equiv 0.68 mCi</math>
 
 
=References=
 
 
[[Simulations_of_Particle_Interactions_with_Matter]]
 
[[Simulations_of_Particle_Interactions_with_Matter]]
  
 
  Voss and 3 russian references for Dy(n,x) cross sections
 
  Voss and 3 russian references for Dy(n,x) cross sections
  
[[Media:Shalem_MSthesis_march2005.pdf]]
+
 
  
 
http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum
 
http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum
Line 3,603: Line 918:
 
Resistors online store : http://www.justradios.com/rescart.html
 
Resistors online store : http://www.justradios.com/rescart.html
  
 +
==RETGEMs==
  
;RETGEMs
+
[[Media:Jinst8_02_p02012_THGEM_spark.pdf‎]]
  
[[Media:Jinst8_02_p02012_THGEM_spark.pdf‎]]
 
  
 +
[[Media:2010_INST_5_P03002.pdf‎]]
  
 
;Thick GEM COBRA:
 
;Thick GEM COBRA:
Line 3,629: Line 945:
 
Stainless Steel deflection [http://www.bssa.org.uk/topics.php?article=126]
 
Stainless Steel deflection [http://www.bssa.org.uk/topics.php?article=126]
  
 +
==Data Sheets==
 +
 +
radioactive surface cleaner NoCount MDSD [[File:radioactive_surface_cleaner.pdf]].
  
 
==Th-Xsection references==
 
==Th-Xsection references==
Line 3,680: Line 999:
  
  
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVV-46G57SW-53&_user=10&_coverDate=10%2F01%2F1991&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1388383717&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3229e061695dfa28617f9f5db1ef55d
+
[[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVV-46G57SW-53&_user=10&_coverDate=10%2F01%2F1991&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1388383717&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3229e061695dfa28617f9f5db1ef55d]]
  
 
http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172
 
http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172
Line 3,690: Line 1,009:
  
  
http://books.google.com/books?id=NRXnXmFRjWYC&pg=SA48-PA17&lpg=SA48-PA17&dq=depleted+uranium+coating&source=bl&ots=a6jHsdI6Ec&sig=zVxKGeD4E42gAVkr8Otg9bfpkyg&hl=en&ei=8FgtTIH1HMGC8gbNl-S-Aw&sa=X&oi=book_result&ct=result&resnum=6&ved=0CCoQ6AEwBThG
+
[http://books.google.com/books?id=NRXnXmFRjWYC&pg=SA48-PA17&lpg=SA48-PA17&dq=depleted+uranium+coating&source=bl&ots=a6jHsdI6Ec&sig=zVxKGeD4E42gAVkr8Otg9bfpkyg&hl=en&ei=8FgtTIH1HMGC8gbNl-S-Aw&sa=X&oi=book_result&ct=result&resnum=6&ved=0CCoQ6AEwBThG]
 
 
http://www.google.com/url?sa=t&source=web&cd=90&ved=0CDYQFjAJOFA&url=http%3A%2F%2Fwww.ga.com%2Fenergy%2Ffiles%2FIFT_Catalog.pdf&ei=RFktTPbgKYL88AbC1tSSAw&usg=AFQjCNE3VbqBWbvcKln4pJVAj8FyKfcOig
 
  
 +
[http://www.google.com/url?sa=t&source=web&cd=90&ved=0CDYQFjAJOFA&url=http%3A%2F%2Fwww.ga.com%2Fenergy%2Ffiles%2FIFT_Catalog.pdf&ei=RFktTPbgKYL88AbC1tSSAw&usg=AFQjCNE3VbqBWbvcKln4pJVAj8FyKfcOig]
  
 
;IAEA Photonuclear Data Library  [http://www-nds.iaea.org/photonuclear/]
 
;IAEA Photonuclear Data Library  [http://www-nds.iaea.org/photonuclear/]
Line 3,706: Line 1,024:
 
=Related To Gaseous Detectors=
 
=Related To Gaseous Detectors=
  
=Feedback and breakdown in parallel plate chambers (10/21/10)=
+
==Breakdown and Detector Failure  (10/21/10)==
Breakdown can be justified
+
 
 +
;Different kind of micro-pattern detectors
 +
 
 +
 
 +
 
 +
 
 +
;References
 +
 
 +
1- A. Bressan, M. Hocha : NIM A 424 (1999) 321—342 [[File:High_rate_behavior_and_discharge_limits_in micro-pattern_detectors .pdf]]
 +
 
 +
2- Fonte and Peskov IEEE 1999 :[[File:fundamental_limitations_of_high_rate_gaseous_detectors.pdf]]
 +
 
 +
3- B. Schmidt: NIM A 419 (1998) 230—238 [[File:Microstrip_gas_chambers_Recent_developments_radiation_damage.pdf]]
  
 
= Ideas=
 
= Ideas=
Line 3,769: Line 1,099:
 
[[TGEM_Mask_Design]]
 
[[TGEM_Mask_Design]]
  
 +
=P_D=
 +
 +
[[Performance of THGEM as a Neutron Detector]]
 +
 +
[[H_Proposal_Defense]]
  
 
=Vendor=
 
=Vendor=
==Thick Film Screen Printers==
+
===Thick Film Screen Printers===
  
 
http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers
 
http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers
Line 3,778: Line 1,113:
  
 
[http://wiki.iac.isu.edu/index.php/TGEMS Go Back] [[TGEMS]]
 
[http://wiki.iac.isu.edu/index.php/TGEMS Go Back] [[TGEMS]]
 +
 +
 +
===tektronix oscilloscope===
 +
 +
134.50.3.73
 +
 +
 +
http://134.50.203.63/
 +
 +
 +
<references/>

Latest revision as of 03:52, 2 November 2015

HM_2014

2012

2011

2010

2009

Dissertation

11/01/2015

Measurements


File:Measurements 1.pdf File:Measurements 2.pdf File:Measurements 3.pdf


Conclusion

File:Conc.pdf

alpha calibration

Ch alphaE.png


File:Raw data all.pdf


The main peaks are for the following channel numbers,

You need to redo these plots in publication quality with proper axis labels containing units.

Ch alphap1.png Ch alphap2.png

channel Number Energy Upper limit (MeV) Energy lower limit (MeV) average energy (MeV) Notes
4828 4.90 4.79 4.85 +_ 0.02
4869 4.94 4.83 4.88 +_ 0.02

Gamma Spectrum for U-233

Gamma spect.png

Last runs

Run Number start end Time (min) Shutter Source Count rate (counts/min) Notes
9005 05/15 15:00 05/16 10:55 open off 50
9006 05/16 10:57 05/17 22:18 open on 48
9007 05/17 22:23 05/18 19:20 closed on 30
9008 05/18 21:46 05/19 19:59 closed off 30 high beta effect
9010 05/21 23:23 05/22 10:00 closed off 30 high beta effect
9023 05/26 13:06 05/26 13:17 11 open off 87 GEM2.9kV 3.6kV
9024 05/26 13:20 05/26 13:27 7 closed off 26 GEM2.8kV 3.5kV (beta effect decreased)
9032 06/13 12:35 06/13 12:45 10 open off 87 GEM2.8kV 3.5kV (ISU power shutdown)
9033 06/13 12:35 06/13 12:45 10 closed off 26 GEM2.8kV 3.5kV
9034 06/15 20:55 06/15 21:05 10 open off 45 GEM2.8kV 3.5kV
9035 06/15 21:06 06/13 21:16 10 closed off 27 GEM2.8kV 3.5kV
9036 06/17 14:48 06/17 14:58 10 closed off 28 GEM2.8kV 3.5kV
9037 06/17 14:59 06/17 14:09 10 open off 28 GEM2.8kV 3.5kV

The charge spectrum returned to were it was before the neutron exposure after 29 days for closed shutter.

QDC TDC PS-ADC setup

Peak sensing gate

GEM PS gate.png

QDC gate

GEM QDC gate.png


TDC start

TDC pulser.png


TDC STOP

TDC GEM.png

QDC shows a difference

QDC source on off 7724 7726.png

Measurements of the frequently used gas mixture 90/10 Ar/CO2 for the second peak

Changes from the former set up
  1. Using the eG&G timing filter amp. 474 instead of the spectroscopic amp. to amplify the input for the peak sensing ADC.
  2. Gate of a width of 4us has been delyed to track the second peak, as a result part of output spectrum is lost except for the delayed part within the gate width as shown in the figures below:
Lost

PS l1.png

Detected


PS d1.pngPS d2.png


Run Number Date start end Time (min) Shutter Source Count rate (counts/min) Notes
7435 08/24/14 19:30:48 19:55:32 open on 400 a peak is noticed on channel 400
7436 08/24/14 19:59:05 20:40:11 open off 216 the peak disappeared
7438 08/24/14 19:59:05 10:00:00 open on 0.0146 triple coin., high noise, max. is ch 355
7444 08/25/14 21:17:25 21:20:35 open on 230 gate delay 700 ns, peak disappeared Gate delay700ns.png
7446 08/25/14 21:29:51 21:38:55 open off 185 does not count for P_B. peak disappeared


Shutteropen sourceon off.png

unknown gas mixed bottle measurements

Updates

Changing the leading edge disc. to understand the Peak sensing and explain the cut int he peak sensing graph.

Measuring the noise. by starting by low signal rate to distinguish the signal from the noise.

Channels and signals


device ch input source
ADC 5 GEM's trigout
Peak sensing 7 15 GEM's trigout
Peak sensing 5 11 PMT Left
Peak sensing 8 17 PMT right
PS translator
TDC 25 PMT L
TDC 27 GEM's trigout
TDC 29 PMT R
TDC 31 (Stopper) triple coincidence (OR Mode)
CAEN N638
TDC 17 PMT L
TDC B2 18 GEM's trigout multi-hit
TDC B6 22 GEM's B_p
TDC 21 PMT R
TDC 6 30 (pulser) triple coincidence (OR Mode)
TDC 7 23 delayed GEM's trigout


Run Number Date start end Time (min) Shutter Source Count rate (counts/min) Notes
7273 08/06/14 07:10:38 11:41:00 12502 open off 67 0.1 flow rate
7274 08/06/14 11:49:35 18:15:01 23126 closed off 39 0.1 flow rate
7275 08/06/14 20:37:07 09:10:10 closed off 40 0.2 flow rate
7276 08/06/14 09:15:00 09:32:00 open off 80 0.2 flow rate amplification increases from 50 to 100
7277 08/06/14 09:33:08 11:40:42 7654 open off 81 0.2
7295 08/08/14 17:36:58 19:55:59 4741 closed off 60 0.2
7296 08/08/14 22:28:01 23:43:14 closed off 58 0.3
7297 08/08/14 23:48:14 12:08:00 37186 open off 93 0.3
7298 08/09/14 00:16:14 06:08:03 21109 closed off 56 0.3
7299 08/10/14 19:27:12 20:09:04 2152 closed on 107 0.1
7300 08/10/14 20:11:30 20:46:29 2099 open on 136 0.1
7302 08/11/14 06:53:14 07:22:45 1771 closed on 114 0.2
7303 08/11/14 07:26:58 07:48:01 1263 open on 167 0.2
7305 08/11/14 13:21:16 13:55:05 2029 open on 178 0.3
7306 08/11/14 14:41:00 15:40:00 3540 closed on 110 0.3
7307 08/14/14 08:14:15 08:20:39 384 closed off 0.1 noise measurements (pulser only)
7308 08/14/14 08:22:43 08:29:23 open off 1314 0.1 noise measurements (pulser only) same noise level as shutter closed (ch. 86) for Peak sensing ADC
7309 08/14/14 08:35:09 09:45:37 4229 open off 0.1 flow rate was not exact, little less.
7310 08/14/14 09:46:12 11:18:39 5547 open off 54 0.1 flow rate was not exact, little less.
7311 08/14/14 11:19:45 13:01:57 6132 open off 52 0.1 flow rate was not exact, little less.
7312 08/14/14 13:10:50 14:28:07 4637 open off 72 0.1 flow rate was not exact, little less.
7313 08/14/14 14:30:24 15:38: 48 4056 open off 80 0.1 flow rate as is used to be
7314 08/14/14 15:41: 52 16:46:55 3897 open on 147 0.1 flow rate as is used to be
7315 08/14/14 16:49: 59 19:14:30 8729 open on 148 0.1 flow rate as is used to be
7316 08/14/14 19:18:43 22:14:07 10596 open on 147 0.1 flow rate as is used to be
7317 08/14/14 22:18:24 10:18:52 43220 open on 0.0095 0.1 flow rate, triple coincidence
7318 08/15/14 10:24:00 12:42:23 8303 open on 147 0.1 flow rate
7319 08/15/14 12:46:14 15:46:09 10795 open on 148 0.1 flow rate
7323 08/15-16/14 16:59:39 06:03:11 46970 open off 0.0011 0.1 flow rate, triple coincidence
7329 08/16/14 07:06:32 10:35:35 12543 open off 83 0.1 flow rate, PMT's charge is measured for L and R
7330 08/16/14 10:41:58 12:48:33 7595 open on 146 0.1 flow rate
7331 08/16-17/14 12:52:07 06:45:03 64384 open off 0.0016 0.1 flow rate, triple coincidence, coda counted 111 but the data file is empty!
7332 08/17/14 06:52:26 07:04:45 739 open on 1367 0.1 flow rate noise measurements with the wave generator
7333 08/17/14 07:05:50 08:53:54 open on 155 0.1 flow rate
7334 08/17/14 08:57:02 13:13:38 open off 82 0.1 flow rate
7337 08/17/14 14:17:24 14:30:29 open on 1400 0.1 flow rate, GEM 2.92 kV , CATH 3.47kV(+50V), noise measurements with the wave generator
7338 08/17/14 14:31:37 16:17:45 open on 163 0.1 flow rate
7339 08/17/14 16:20:25 16:35:45 open off 1368 0.1 flow rate, noise measurements with the wave generator
7340 08/17/14 16:37:01 20:33:04 open off 95 0.1 flow rate
7341 08/17-18/14 20:40:16 06:18:43 open off 0.0015 0.1 flow rate, triple coincidence
7342 08/18/14 06:25:44 06:37:43 open on 1403 0.1 flow rate, noise measurements
7345 08/18/14 06:39:23 14:17:58 open on 0.0128 0.1 flow rate, triple coincidence
7355 08/18/14 16:03:29 19:59:51 open off 75 0.1 flow rate, EM 2.82 kV , CATH 3.37kV(-50V), CAEN translator is used
7356 08/18/14 20:03:05 20:07:58 open on 2k 0.1 flow rate, noise measurement
7357 08/18/14 20:08:43 22:48:22 open on 142 0.1 flow rate
7358 08/18-19/14 22:53:13 10:52:44 open on 0.0082 0.1 flow rate , triple coincidence
7359 08/19/14 10:55:49 10:59:52 open on 2.1k 0.1 flow rate , noise measurement
7360 08/19/14 11:00:38 14:26:38 open on 156 0.1 flow rate noise measurement with 1 Hz sampling
7361 08/19/14 14:40:49 18:25:00 open on 0 0.1 flow rate with 1 Hz sampling (AND gate)
7362 08/19/14 18:33:15 18:38:54 open on 1.5k 0.1 flow rate triple coinc.(OR)
7363 08/19-20/14 18:39:46 13:39:45 open on 0.0081 0.1 flow rate triple coinc.(OR)
7364 08/20/14 13:44:56 13:50:57 open off 1.55k 0.1 flow rate noise measurements, 2.87, 3.42kV for GEM and CATH
7367 08/20/14 15:08:27 16:49:37 open off 86 0.1 flow rate, 2.87, 3.42kV for GEM and CATH
7368 08/20/14 16:53:42 17:15:49 open on 154 0.1 flow rate
7369 08/20/14 17:17:39 20:28:43 open off 86 0.1 flow rate, spec. amplifier decreased from 100 to 50
7479 08/27/14 10:02:21 10:42:09 open on 64 0.1 flow rate,
7480 08/27/14 10:46:18 14:17:22 open off 11 0.1 flow rate,
7481 08/27/14 14:19:33 14:43:39 close on 78 0.1 flow rate,
7488 08/27/14 16:16:37 16:48:53 open on 86 0.1 flow rate,
7491 08/27/14 18:09:27 18:59:05 open on 86 0.1 flow rate,


Peak sensing measurements by 08/28/14

Peak sensning measurements for GEM were recorded in the time between 8:00 am to 9:44am for shutter open as the following


Source On Source Off
7507 7506
7509 7508
7511 7510
7513 7512
7515 7514
7517 7516
7519 7518
7521 7520


Unknownbootle measurements 06 13.pngUnknownbootle measurements 14 21.png


Different output for each run when Peak sensing is used to measure the charge, what is noticed that the charge is different from one run to another, but all the runs show that the amount of charge collected is bigger when the shutter is open with the source on it except for run 7511. By comparing all the runs, As the shutter is open, the maximum charge is collected by channel number 800, as the source is on the detector, the collected charge reached up to channel 1000 at most.

Measuring the data started by 8 am, the noise rate increased so it increased the event rate from 30s to 80s event/s, and it did not decrease until now (Thur. 15:36 08/28/14). all module wiring were checked but without any result. I am using the 90/10 Ar/CO2 bottle as hope to take some measurements but when the noise level goes down maybe this evening to repeat the same measuremnts.

The following reference shows a change in collected charge as the tenperature changes <ref>"Discrimination of nuclear recoils from alpha particles with superheated liquids" F Aubin et al 2008 New J. Phys. 10 103017 </ref>

Temp signal effect.jpg

Flow rate and figures

03 flow rate

03 sourceOn.png 03 sourceoff.png 03 openOn off sub.png

02 flow rate

02 sourceOn.png 02 sourceoff.png 02 openOn off sub.png

01 flow rate

01 sourceOn.png 01 sourceoff.png

Common Start Common Stop exchange

Edit the file

cd /usr/local/coda/2.5/readoutlist/v1495trigPAT/

as the following:

for common start comment:

/* c775CommonStop(TDC_ID);

for common stop uncomment:

 c775CommonStop(TDC_ID);

Ionization xsections for different particles emitted from U-233

Photons

Photoabosorption Ar.png Photoabosorption CO2.png Photoabosorption Ar CO2.png

Ref. : http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html


Electrons

Electron ion Ar.png

Ref. :

Data Nucl. Data Tables 54 (1993) 75 File:Electron ionization Ar.pdf


Alpha Particles

Alpha ionization.png

Ref. :

http://www.exphys.jku.at/Kshells/

Data Nucl. Data Tables 54 (1993) 75

Coincidence Measurements for GEM and the Plastic scintillator

Coincidence Measurement for the scintillator PMT's without shielding and without source
Date Time No. of Counts (counts) Count rate (counts/min)
07/09/14 1066 659005 618
07/10/14 538 368974 686


Triple coincidence Measurement for the scintillator PMT's shielded and without source

Triple coincidence among the 2 PMT's and the GEM detector is measured using coincidence module caberra 2144 and ortec 778 counter, count rate is 0.3+_ 0.03 Hz. However, the rate was zero before shielding.

The following pics show The GEM output with triple coincidence signal, it is observed that different GEM peaks coincide with the triple signal, which shows that adding the shielding contaminates the neutron signal.


GEM triple smallpeak.png GEM triple bigpeak.png GEM triple twopeaks.png

Coincidence Measurements for the Plastic scintillator after shielding

Without source

The plastic scintillator count rate before shielding and without source was in average 12 +_ 1 Hz, lead is added to the GEM and to the plastic scintillator which did not change the rate of the coincidence for the plastic scintillator . Neither closing the box door with lead nor adding lead to the top of the box did make any change in the number of counts for the plastic scintillator.


With a source

Background count rate

Date Time PSD_e (counts) PSD_e (counts/min) LED (low disctrinimation)(counts) LED (low disctrinimation)(counts/min) LED (high disctrinimation) (counts) LED (high disctrinimation) (counts/min)
07/01/14 1166 56671 49 2936748 2519 10 0.009
07/01/14 231 10529 572657 1542


data graphs

[math]S_{HLE}[/math]


B pdaily counts.png

The above graph represents the change in the count rate of B_p, as the shutter is open (green) and as it is closed (red), the error bars get smaller since each point represents the average of two sets of daily measurements, in addition to, changing the PS discriminator's level after the second measurement.


[math]S_{PSD}[/math]


S pdaily counts.png

The above graph has the same legend as the one for B_p, error bars increase for some data when the shutter is open, since one or more of the daily measurements has a higher number of counts because of U-233(4)'s spentaneous fission. (the number of counts is close to the number of counts as the shutter is open and the source is on).


Small=[math]S_{PSD} - S_{PSDE}[/math]

Testing GEM Experiment test 10/23/13

The GEM detector was tested for signal and discharge as the voltage of the cathode and HV-circuit divider is 3.3 kV and 2.7 kV successively.

The GEM detector signal is observed as it used to work before. the pictures below show the signal detected as the shutter is open and as it is close.


shutter close GEM close 1.png GEM close 2.png
shutter open GEM open 1.png GEM open 2.png GEM open 3.png GEM open 4.png

THGEM#9 Counting Experiment test 1/4/13

THGEM#9 Counting Experiment

GEM HV-divider circuit

GEM HV-divider circuit in shown in the figure, measurements were recorded for for top and bottom voltage of each preamplifier.

GEM HV Dist Net.jpg


The table below shows value of the voltage on each preamplifier's side relative to ground.


[math] V_{source} \pm 1 [/math] [math] V_{G1T} \pm 1 [/math] [math] V_{G1B} \pm 1 [/math] [math] \Delta V_1 \pm 1 [/math] [math] V_{G2T} \pm 1 [/math] [math] V_{G2B} \pm 1 [/math] [math] \Delta V_2 \pm 1[/math] [math] V_{G3T} \pm 1 [/math] [math] V_{G3B} \pm 1 [/math] [math] \Delta V_3 \pm 1 [/math]
2550 2579 2259 304 1671 1394 279 818 570 245
2600 2630 2303 310 1704 1421 285 834 581 250
2650 2680 2348 316 1737 1449 290 850 592 255
2700 2731 2393 322 1770 1476 296 866 603 260
2750 2781 2373 328 1803 1503 302 882 614 264
2800 2832 2482 332 1836 1530 307 898 625 269



The source voltage means the voltage value on the 4-channel CAEN N470 display. (suppose to be equal to the voltage of the top GEM1).

the values are going to be an input for ANSYS which is going to simulate the electric field for each source voltage separately, ANSYS' output files will be an input for Garfield to simulate the electron multiplication by the triple GEM.

GEM alpha-Beta detector counter

GEM Alpha-Beta detector counter

GEM gain data graphs and GEM Calibration in LDS

GEM Detector

GEM performance QDC data graphs

Calibrating GEM detector


Electronics Flow Chart

LDS electronics flow chart.png


GEM Detector and Scintillator

GEM and Sci. data and measuurements

GEM gain data graphs and GEM Calibration at the IAC

Haitham may only alter the QDC's dual timer and a CFD for the QDC in the IAC DAQ.
Haitham may only add signals to the NIM->ECL translator
Haitham is not allowed to change any cables that are used for the PAA setup
Summary

The detector is installed in the IAC after modifications took place in the detector design.

These modifications are:

1- The detector kipton window's area increased to the same size of the GEM cards( 10X10 cm)

2- The distance of the cathode from the first GEM increased up to 1.2 cm. previously the distance was about 3.5 mm. (No change in GEM's distances 2.8mm, or the readout 0.5 mm)

Increasing the drift distance demands an increase in cathode potential to maintain the same values of the electric field in the old setup.

3- The detector is installed in a wooden box, in addition to a plastic scintillator which was placed to cover part of the detector window.


GEM performance data graphs


Electronics Flow Chart

IAC electronics flow chart.png


200px

U-233 fission x-section data and fission yield

U-233 fissionxsection 0.01-100MeV.gif U-233 fissionxsection fullenergyrange.gif

U-233 fissionxyield percent.png


What is the energy distribution of Beta, Photon and alpha from U-233

Alpha

nuclide Energy (MeV)
Pb-213 8.4
Bi-213 5.9
At-217 6.3
Fr-221 6.3
Th-229 4.85 (alpha spectrum, highest counts for is 4.85 MeV)

Gamma

Gamma distribution for U-233 and its daughters are in metioned in details in the documents , File:U233 day gamma.pdf <ref>http://www.radiochemistry.org/periodictable/gamma_spectra , Wed. 04/10/2013</ref>

The energy range of the emitted gamma is shown in the following table .

nuclide Energy Minimum Energy Maximum (keV)
U-233 25 1,119
Ra-225 40 40
Ac-225 10.5 758.9
Fr-221 96.8 410.7
At-217 140 593.1
Bi-213 323.81 1,119.4


Beta

Beta particles are emitted mainly from U-233 daughters as shown in the figure <ref> http://itu.jrc.ec.europa.eu/index.php?id=204, Wed. 04/10/2013 </ref>

U-233 decay beta energy.jpg

U-233 -> Th-229, emitted alpha particles have energy of 4.8 MeV.

Insert energy distribution for Betas

The following table shows the negative beta emitter nuclides,their parent nuclides, and their half lives:


Nuclides energy (MeV) half life
[math]Ra^{225} \rightarrow Ac^{225}[/math] 0.357 14d.
[math]Bi^{213} \rightarrow Po^{213}[/math] 1.426 46min.
[math]Tl^{209} \rightarrow Pb^{209}[/math] 1.981 2.2 min.
[math]Pb^{209} \rightarrow Bi^{209}[/math] 0.644 3.25h
[math]Bi^{209}[/math] 1.893 stable

What is the energy distribution after the 1 mm FR4 shutter

electron shutter penetration

The energy distribution below represents the incidence electron on a 1 mm FR4 shutter.

E spectrum.png

graph of electron energy for electron penetrating shutter (did any not penetrate?, how many?)



photons below were produced by above incident electron?

The energy distribution of photons was observed on the opposite side of the shutter

Photon spectrum.png


Electrons (with least energy from U-233= 0.2 MeV) pass through the shutter have the energy distribution below.

alpha shutter penetration

photons

Number of ions produced from Beta and Photon in ArCo2

EMTest10 is used to calculate the average number of ions (electrons) when a 101 beta of 1 MeV are fired in a world that contains ArCO2. (13.5 per primary electron).


SecondaryElectron Energy 1Mevbeta.png

The needed time to observe the GEM signal

In the case of triple GEM detector with a gas flow of 0.3 SCFH and 2650V and 2950V on GEM cards and cathode successively, a signal lower than the noise (of 16 mV and amplified twice) is observed at 770.0s +/- 0.1.

The normal rate (8 MHz +/- 2 as measured by the oscilloscope) is observed after 952.9s +/- 0.1.

THGEM card tasks and tests

New THGEM cards

Two new fully machined cards are going to be tested in air and ArCH4, if they passes 2000 V potential bwtween the top and the bottom, then they are going to be installed in ArCh4 gas chamber.

The older THGEM cards will have a high voltage enough to have one spark/min to clean impurities or surface defects.

GEM Signal after the latest modification on the fission chamber 07/01/13

The signal of the detector is observed as the shutter is open and close.

shutter close GEM close.jpg GEM close1.jpg GEM close2.jpg GEM open.jpg
shutter open GEM open 7 1.jpg


GEM's signal testing when it a long cable is used

The GEM signal is tested when a long cable is used to transfer the signal to the oscilloscope as the shutter is open, and without the cable. Oscilloscope pictures shows an attenuation to the signal up to 30%.


Long bnc cable GEM longcable1.jpg GEM longcable2.jpg
Short bnc cable GEM shortcable.jpg


Roy's detector infomation and measurements

U-233 metal deposited source is measured by Protean Instrument corporation gaseous detector, has a model number of WPC9450 (serial number: 0915723)and uses (P10) gas mixture, as shown below:

Shutter position Alpha particles /min. Beta particles /min.
Open 6879 900
Close 1 38

The source was in a plate of a diameter of 16 cm which was exposed to to the sensitive part of the detector of a height of 2-3 mm.

The activity of the source is calculated based on the solid angle [math] \frac {A \times W}{4\pi} [/math]

where A is the count per second and W is the detector solid angle.

For the previous measurement, the solid angle is almost [math]2\pi [/math], so the the actvity of the source is twice the measured value in count/second.


IAC experiment producing neutrons

One of the IAC experiments produces neutrons, the neutron spectrum from Tungsten target is simulated outside and inside water (moderator) as shown in the figure below

Moderator nspect.png

In the simulation above , They are interested in close distances to the Tungsten target inside the water container, it is 1 ft cubed container and is made of aluminium and covered polyester.

Exp setup.png

References

THGEM design

THGEM#9

Media:Shalem_MSthesis_march2005.pdf


Media:Raz_Alon_MSthesis_Dec2007.pdf

Electric field Simulation

Rim size dependence

File:THGEM Efield simulation.pdf


2010 THGEM design(s)

File:THGEM 2009 design gas efficiency.pdf


Simulations_of_Particle_Interactions_with_Matter

Voss and 3 russian references for Dy(n,x) cross sections


http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum


http://www.ippe.obninsk.ru/podr/cjd/kobra13.php?SubentID=30974002

http://www.americanelements.com/thoxst.html

http://arxiv.org/pdf/physics/0404119

NIM_A535_2004_93[1]


File:NIM A590 2008 pg134 Eberhardt.pdf Prep Targets

Neutron cross sections for different elements Media:Neutron_cross_sections.pdf

http://www-nds.iaea.org/RIPL-2/

Media:n gamma cross sections at 25 keV.jpg

Media:n alpha cross section at 14.2 MeV.jpg

Media:ne cross section at 14 MeV.jpg

Media:high enegy fission x-section.jpg

Media:N_gamma_x-section_at_400_keV.jpg

Media:x-sections of reactions at 14 MeV.jpg

Media:n p x-section at 14.3MeV.jpg

Media: n gamma x-section at 14.5 MeV.jpg

Media: elastic x-section at 0.5 MeV.jpg

Media: n gamma x-section at 1 MeV.jpg

Media: n 2n x-section at 14.3 MeV.jpg

Donald James Hughes, Neutron cross sections, 2nd edition 1958, u.s.a atomic energy commission.Media:Neutron cross sections.pdf

File:NSAE 151 2005 319-334 Y.D. Lee.pdf

TGEM-2009 File:TGEM 2009.pdf

12 Volt power supply system.

http://www.lnf.infn.it/esperimenti/imagem/doc/NIMA_46128.pdf

http://electrontube.com.Media: rp097mono HV divier.pdf

http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078

http://en.wikipedia.org/wiki/PC_board

http://wikipedia.org

A : concise review on THGEM detectors A.Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. M. F. Dos Santos

GEANT4_Paticles_Models[2]

Resistors online store : http://www.justradios.com/rescart.html

RETGEMs

Media:Jinst8_02_p02012_THGEM_spark.pdf‎


Media:2010_INST_5_P03002.pdf‎

Thick GEM COBRA

Media:THGEM_COBRA_08_10.pdf‎


Media: Nucl_Phys_B_Bidault_ novel UV photon detector.pdf

Media:Mauro micro pattern gaseuos detectors.pdf

Media:Development and First Tests of GEM-Like Detectors With Resistive Electrodes.pdf

http://www.supplydivision.co.uk/genitem.htm


http://www.radioshack.com/search/index.jsp?kwCatId=&kw=24%20gauge%20wires&origkw=24%20gauge%20wires&sr=1

Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[3]

Stainless Steel deflection [4]

Data Sheets

radioactive surface cleaner NoCount MDSD File:Radioactive surface cleaner.pdf.

Th-Xsection references

File:Th-232 fxsection Behrens 0.7-1.4MeV.pdf

File:Th-232 fxsection Blons 1975 1.2-1.8MeV.pdf

File:Th-232 fxsection ermagambetov 0-3MeV.pdf

File:Th-232 fxsection Henkel 0-9MeV.pdf

File:Th-232 fxsection Ohsawa original.pdf

File:Th-232 fxsection pankratov 3-35MeV.pdf

File:Th-232 fxsection protopopov distancefromthesource.pdf

File:Th-232 fxsection rago 12.5-18MeV.pdf

U-238-Xsection and coating references

relative cross section and calibration samples characteristics for a well determined number of fissions per second

File:Eismont relative absolute nf induced intermediate energy.pdf


U_238 cross section error analysis

INTERNATIONAL EVALUATION OF NEUTRON CROSS-SECTION STANDARDS, INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 2007 File:U238-xsection.pdf

U_238 (0.5-4MeV) and Th_232 (1-6MeV) fission cross section with statistical error.File:Th-232 U238 xsetion data ebars.txt


File:Pankratov fxsection Th232 U233 U235 Np237 U238 5-37MeV.pdf


Thorium Coating

ThF4 target for sputtering coatings

http://www.cerac.com/pubs/proddata/thf4.htm

Machining Uranium

Uranium will ignite in powder form


http://www.springerlink.com/content/rr072r52163x0833/

coating Uranium


[[5]]

http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172

Calorimeters/Detectors: DU sheet is in wide-scale use as an absorber material in high-energy physics research at large accelerator laboratories. The high atomic number and density of DU presents a large number of atoms per unit volume to interact with the particles emerging from collisions in these detectors. Also the slight background radiation from DU enables in situ calibration of the electronic read out devices within such detectors, thereby improving the accuracy of measurement.

http://www.2spi.com/catalog/chem/depleted-uranium-products.html


[6]

[7]

IAEA Photonuclear Data Library [8]
Data Acquisition

Warren_logbook[9]


Warren_Thesis [10]

Related To Gaseous Detectors

Breakdown and Detector Failure (10/21/10)

Different kind of micro-pattern detectors



References

1- A. Bressan, M. Hocha : NIM A 424 (1999) 321—342 File:High rate behavior and discharge limits in micro-pattern detectors .pdf

2- Fonte and Peskov IEEE 1999 :File:Fundamental limitations of high rate gaseous detectors.pdf

3- B. Schmidt: NIM A 419 (1998) 230—238 File:Microstrip gas chambers Recent developments radiation damage.pdf

Ideas

1.) Can we mix resistive paste (Encre MINICO) with TH-232. We construct a "bed of nails" to place a predrilled G-10 board with a copper border. The nails fill in the holes of the G-10 to keep the paste out. Ecre MINICO is a resistive paste used for transistors.

a.) Get some resistive paste.


http://www.leggesystems.com/p-253-elimstat-uxm-ccp.aspx

Resistive glue to compare

File:Duralco 4461.pdf


http://www.ellsworth.com/conformal.html?tab=Products

http://www.ellsworth.com/display/productdetail.html?productid=764&Tab=Products


http://www.ellsworth.com/display/productdetail.html?productid=2067&Tab=Products

http://www.cotronics.com/vo/cotr/ea_electricalresistant.htm


b.) mix with a metal similar to Th-232.

c.) construct bed of 0.4 mm nails. Look for 0.4 mm diameter pins.

7/31/2009

New vendor for carbon paste.

http://www.electrapolymers.com/productItem.asp?id=33

The data sheet does not show any information about the thickness of the paste.

The company has a distributor in the usa (877)-867-9668. A phone call is expected on Sat. 8/3/2009 about the availability of the product.

TGEM Mask Design

Coating U-238 or Th-232 is essential for neutron detection in the range 2-14 MeV, but THGEM contains holes that should be protected from any coating material. So, a mask is designed to cover these holes. The holes are in drilled to be on the corners of hexagonal of 1mm side length as in the figure:

Hexagonal representaion holes 04mm 1mmc2c.jpg


The mask is made of stainless steel, 10 um laser tolerance with cut the plate to get the shape in the figure:

Holes covered by mask.jpeg

Please look at the following files for more details:

Make number bold black font. Add color so it is clear that they are holes in a material.

File:Copper foil 04mm.pdf

File:Holes mask together.pdf


TGEM_Mask_Design

P_D

Performance of THGEM as a Neutron Detector

H_Proposal_Defense

Vendor

Thick Film Screen Printers

http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers

http://www.marubeni-sunnyvale.com/screen_printing.html

Go Back TGEMS


tektronix oscilloscope

134.50.3.73


http://134.50.203.63/


<references/>