Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 10: Line 10:
  
 
[[Niowave_Report_11-30-2015]]
 
[[Niowave_Report_11-30-2015]]
 +
 +
 +
deadline 4/12/16
 +
 +
 +
==[[Niowave_9-2015]]==
 +
==[[Niowave_10-2015]]==
 +
==[[Niowave_11-2015]]==
 +
==[[Niowave_12-2015]]==
 +
==[[Niowave_1-2016]]==
 +
==[[Niowave_2-2016]]==
 +
==[[Niowave_3-2016]]==
 +
==[[Niowave_4-2016]]==
 +
==[[Niowave_5-2016]]==
 +
==[[Niowave_6-2016]]==
 +
 
=Task List=
 
=Task List=
 +
 +
0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.
 +
  
 
1.)  Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz  for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
 
1.)  Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz  for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
Line 31: Line 50:
  
 
=Target thickness optimization=
 
=Target thickness optimization=
 +
 +
==[[PbBi_THickness_CylinderBeam]]==
  
 
==[[PbBi_THickness_GaussBeam]]==
 
==[[PbBi_THickness_GaussBeam]]==
 
==[[PbBi_THickness_CylinderBeam]]==
 
  
 
== [[PbBi_THickness_PntSource]]==
 
== [[PbBi_THickness_PntSource]]==
Line 48: Line 67:
 
==Positron & Electron event files==
 
==Positron & Electron event files==
  
Event files were generated assuming an ideal solenoid having an inner radius of 2.527 cm surrounding a beam pipe with a radius of 1.74 cm.  Electrons impinge a 2mm thick PbBi liquid target that has a surface area of 2.54 cm x 2.54 cm.  Stainless steel windows 0.25 mm thick sandwhich the PbBi target at locations Z= -90.325 and Z= -89.875 cm. The target is located at Z =-90.1 cm and the beam begins 20 cm upstream at Z = -110.1 cm.  The incident electron beam is a 0.5 cm radius cylinder.
+
[[PbBi_PosEventFiles_VaccumGaps_2015]]
 
 
===Positrons exiting the Solenoid===
 
 
 
The solenoid design has changed such that the max field is 0.20 Tesla (0.22) and its length is 150 mm. 
 
 
 
 
 
  
+
[[PbBi_PosEventFiles_NoGaps_2016]]
{| border="1"
 
| [[File:TF_Niowave_SolenoidDesign_12-04-15.png | 200 px]] || [[File:TF_LBEtarg1_1-12-16.png | 200 px]]|| [[File:TF_LBEposEvent_1-12-16.png | 200 px]]
 
 
 
|-
 
| Overall Target layout || Closeup of Target Simulation Geometry. The center of the 0.25mm thick stainless steel windows are a distance of 2.25 mm from the center of the LBE target.  <math>d_{USS} =  d_{DSS} =</math> 2.25 mm, <math>t_{LBE}=2</math> mm, <math>t_{SS} =</math> .25 mm. ||  An example positron production event.  The yellow lines represents a sensitive detector used to record all positron events.  The red line represents the incident 10 MeV electron that produces two bremsstrahlung photons shown in green.  The first photon has an energy of 2.151 MeV and pair produces in the stainless steel window.  The second photon has an energy of 1.393 MeV and exits the system without interacting.  The first photon is created at time t= 3.323 ns. The first photon produces a  234.6 keV electron and a 894.2 keV positron at time t=3.336 ns.  Only the positron has enough energy to exit the stainless steel window.
 
|+ Apparatus
 
|}
 
 
 
 
 
In other words I should generate position and momentum files for positrons and electrons at the Z location 15 cm downstream from the middle of the LBE target and within a 3.48 cm diameter beam pipe.
 
 
 
/vis/viewer/zoom 2
 
 
 
/gps/pos/centre 0.0 0.0 -150.
 
 
 
/vis/viewer/panTo -90.1 0 cm
 
 
 
/vis/viewer/reset
 
 
 
 
 
Twenty (20) million incident electrons with an energy of 10 MeV and forming a cylindrical beam with a 0.5 cm radius cylinder impinged a 2mm thick LBE target located at Z = -106 mm.  The Z location of positrons exiting the beam pipe at the end of the 15 cm long solenoid is 44 mm.  The positrons are 150.00 mm from the middle of the LBE target (Z=44mm).
 
 
 
A space delimited text file with the above events in the format of
 
 
 
PID, x(mm),y,z,Px,Py,Pz(MeV),t(ns)
 
 
 
in units of cm for distance and MeV for momentum is located at
 
 
 
for positrons
 
 
 
http://www2.cose.isu.edu/~foretony/Positrons_2mm10MeVCyl.dat
 
 
 
 
 
and
 
 
 
http://www2.cose.isu.edu/~foretony/Electrons_2mm10MeVCyl.dat
 
 
 
The file below contains all the positrons that were created at the target
 
 
 
format
 
 
 
 
 
A space delimited text file with the above events in the format of
 
 
 
Initial electron (x,y,z,Px,Py,Pz), Final electron (t,x,y,z,Px,Py,Pz), Positron location after leaving LBE target (t,x,y,z,Px,Py,Pz),Location of positron as it exits a SS window (t,x,y,z,Px,Py,Pz).  Units are ns, mm, MeV/c.
 
 
 
http://www2.cose.isu.edu/~foretony/AllPositrons_2mm10MeVCyl.dat
 
 
 
 
{| border="1"
 
| [[File:PositronTime_1-10-16.png|200px]]  ||
 
|-
 
|  Particle flight times for 20 million incident electrons on a 0.2mm thick LBE target with 0.25 mm thick stainless steel windows (no material exists after the last stainless steel window, only vacuum). The time an electron brems in the target (EscatTime) is shown in black.  The time a positron is created in the target (PosTime) is shown in blue.  The time a positron has traveled 15 cm traversing a uniform 0.2 Tesla Solenoidal field (PosBeamTime) is shown in fuchsia.  The field exists throughout the entire world.  PosBeamTimeCuts are positrons that are constrained to a beam pipe diameter of 34.8 mm.  Positrons are traveling about the speed of light (30 cm/ns) so after 15 cm they arrived 0.5 nsec after the initial electron beam impinges the target.
 
|+ Positron Distributions
 
|}
 
 
 
 
 
===Positrons and Electrons after the SS Exit window===
 
 
 
The same configuration as the previous subsection except that the  1mm thick sensitive detector is placed at
 
Z = -100.5 mm.  Most of the electrons exit at Z = -100.9 mm.
 
 
 
A space delimited text file with the above events in the format of
 
 
 
PID, x(mm),y,z,Px,Py,Pz(MeV),t(ns)
 
 
 
in units of cm for distance and MeV for momentum is located at
 
 
 
for positrons
 
23500  Positrons in the file below
 
 
 
http://www2.cose.isu.edu/~foretony/PositronsAtExitWindow.dat
 
 
 
 
 
and
 
 
 
297216 electrons in the file below
 
 
 
http://www2.cose.isu.edu/~foretony/ElectronsAtExitWindow.dat
 
  
 
==Solenoid Map==
 
==Solenoid Map==
Line 177: Line 111:
  
 
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
 
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
 +
 +
=Background studies=
 +
 +
==Brem Spectrum==
 +
 +
Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV.  The photons are 1 cm downstream of the target and intersection a large forward region.
 +
 +
[[File:PbBi_Brem_6-10MeV_4-7-16.png | 200 px]]
 +
 +
insert photon spacial distributions
 +
 +
Now move the scoring region downstream to a position representing the location of a NaI detector.
  
 
=Beam Line Design=
 
=Beam Line Design=

Latest revision as of 21:39, 8 June 2016

Development of a Positron source using a PbBi converter and a Solenoid

Conclusions

  1. A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
  2. A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
  3. A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.

Reports

Niowave_Report_11-30-2015


deadline 4/12/16


Niowave_9-2015

Niowave_10-2015

Niowave_11-2015

Niowave_12-2015

Niowave_1-2016

Niowave_2-2016

Niowave_3-2016

Niowave_4-2016

Niowave_5-2016

Niowave_6-2016

Task List

0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.


1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.

compare distributions with and without solenoid.

2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2 for a NaI detector placed at

3.) Experiment, install dipole and solenoid in the tunnel.

Beam Pipe Heating

PbBi_BeamPipeHeatin_2015

Converter target properties

PbBi_NioWave_TargetProperties_2015


Target thickness optimization

PbBi_THickness_CylinderBeam

PbBi_THickness_GaussBeam

PbBi_THickness_PntSource

Solenoid

Uniform ideal Solenoid

PbBi_BeamPipeHeating_w_Solenoid_2015

PbBi_60cmLong_Solenoid_Collection_Efficiency_2015

Positron & Electron event files

PbBi_PosEventFiles_VaccumGaps_2015

PbBi_PosEventFiles_NoGaps_2016

Solenoid Map

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Rear Window Thickness

Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?


Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm. A 0.25 mm thick stainless steel entrance window was used.

Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm. The sensitive detector is a cylinder of radius 11.74 cm.

SS Exit WIndow Thickness (mm) Positrons/Million electrons
0.0 1142,1096,1149,1073,1083 = 1109 +/- 35
0.25 774,836,800,785,798 = 798 +/- 23
0.5 693,704,713,697,715 = 704 +/- 10
1.0 587,606,548,592,550 =577 +/- 26


Conclusion 1
Positron production efficiency improves when the exit window is made thinner
Conclusion 2
You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.

Background studies

Brem Spectrum

Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.

PbBi Brem 6-10MeV 4-7-16.png

insert photon spacial distributions

Now move the scoring region downstream to a position representing the location of a NaI detector.

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations