Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
 
(311 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Development of a Positron source using a PbBi converter and a Solenoid
 
Development of a Positron source using a PbBi converter and a Solenoid
  
=Task List=
+
=Conclusions=
  
1.) new electron and positron files for the case of two 0.25 mm thick SS windows around the PbBi target.
+
#A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
# A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
#A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.
  
2.) Determine electron energy deposition in SS pipe per cm^2 of pipe surface area for pipes with a radius of 34.8, 47.5, 60.2, 72.9, and 97.4 mm and thickness of 5mm along the z-axis.
+
=Reports=
  
3.) Insert uniform B-field that can be scaled from 0 to 0.3 and 1 Telsa.
+
[[Niowave_Report_11-30-2015]]
  
=Beam Pipe Heating=
 
  
A 10 MeV electron beam with a radius of 0.5 cm was incident on a 2mm thick PbBi target.  The target is positioned at Z = -900 mm.  The plot below shows the energy deposited in MeV along the pipe.  The Z axis is along the beam direction.  The arec lenc of the beam pipe is determine by taking the pipe radius (34.8 mm) and multiplying it by the Phi angle around the pipe.  The bins are 1cm x 1cm.
+
deadline 4/12/16
  
[[File:BeamPipeDepE_34.8_082615.png]]
 
  
 +
==[[Niowave_9-2015]]==
 +
==[[Niowave_10-2015]]==
 +
==[[Niowave_11-2015]]==
 +
==[[Niowave_12-2015]]==
 +
==[[Niowave_1-2016]]==
 +
==[[Niowave_2-2016]]==
 +
==[[Niowave_3-2016]]==
 +
==[[Niowave_4-2016]]==
 +
==[[Niowave_5-2016]]==
 +
==[[Niowave_6-2016]]==
  
About 25,000 MeV/cm^2 is deposited when 20 Million , 10 MeV electrons are incident on the 2mm PbBi target.
+
=Task List=
  
 +
0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.
  
root commands used
 
  
  TH2D *AVSz=new TH2D("AVSz","AVSz",100,-1000,0,12,-60,60)
+
1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
  BeamPipeE->Draw("35.*atan(PosYmm/PosXmm):PosZmm>>AVSz","DepEmeV");
 
AVSz->Draw("colz");
 
  
=Converter target properties=
+
compare distributions with and without solenoid.
  
Definition of Lead Bismuth
+
2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2  for a NaI detector placed at
  
 +
3.) Experiment, install dipole and solenoid in the tunnel.
  
1cm diameter target
+
=Beam Pipe Heating=
2 mm thick PbBi
 
  
0.5 Tesla solenoid
+
[[PbBi_BeamPipeHeatin_2015]]
  
 +
=Converter target properties=
  
Desire to know
 
  
Emmittance (mrad * mm)
+
[[PbBi_NioWave_TargetProperties_2015]]
  
dispersion (Delta P/P)  (mradian/1000th  mm/1000th)
 
  
of electrons after the PbBi target.
+
=Target thickness optimization=
  
 +
==[[PbBi_THickness_CylinderBeam]]==
  
pole face rotation in vertical plane.
+
==[[PbBi_THickness_GaussBeam]]==
  
=G4BeamLine and MCNPX=
+
== [[PbBi_THickness_PntSource]]==
  
+
=Solenoid=
==Target thickness optimization==
 
  
===[[PbBi_THickness_GaussBeam]]===
+
==Uniform ideal Solenoid==
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs
 
diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
 
  
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
+
=== [[PbBi_BeamPipeHeating_w_Solenoid_2015]]===
  
2. Twiss parameters
+
===[[PbBi_60cmLong_Solenoid_Collection_Efficiency_2015]]===
  
3. Ellipse centroid for longitudinal phase portrait
+
==Positron & Electron event files==
  
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
+
[[PbBi_PosEventFiles_VaccumGaps_2015]]
  
Electrons - RMS
+
[[PbBi_PosEventFiles_NoGaps_2016]]
  
[[File:Ed1.png| 400 px]]
+
==Solenoid Map==
  
Electrons - 68.2% core
+
Inner Radiusu=
  
[[File:Ed2.png| 400 px]]
+
Outer Radius =
  
Positrons - RMS
+
Length =
  
[[File:Pd1.png| 400 px]]
+
Current=
  
Positrons - 68.2% core
+
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
 
 
[[File:Pd2.png| 400 px]]
 
 
 
=== [[PbBi_THickness_CylinderBeam]]===
 
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs
 
diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
 
 
 
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
 
 
 
2. Twiss parameters
 
 
 
3. Ellipse centroid for longitudinal phase portrait
 
 
 
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
 
 
 
Electrons - RMS
 
 
 
[[File:E1.png| 400 px]]
 
 
 
Electrons - 68.2% core
 
 
 
[[File:E2.png| 400 px]]
 
 
 
Positrons - RMS
 
 
 
[[File:P1.png| 400 px]]
 
 
 
Positrons - 68.2% core
 
 
 
[[File:P2.png| 400 px]]
 
 
 
=== [[PbBi_THickness_PntSource]]===
 
 
 
Electrons and Positrons after 2mm of LBE:
 
 
 
Electrons:
 
  
[[File:e01.png| 200 px]][[File:e02.png| 200 px]]
+
=Rear Window Thickness=
  
Positrons:
 
  
[[File:p01.png| 200 px]][[File:p02.png| 200 px]]
+
Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?
  
===Energy Deposition in Target system (Heat)===
 
  
 +
Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long.  A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm.  A 0.25 mm thick stainless steel entrance window was used. 
  
[[File:ElectronTracks.png| 200 px]][[File:PhotonTracks.png| 200 px]]
+
Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm.  The sensitive detector is a cylinder of radius 11.74 cm.
 +
 +
{| border="1"
 +
{| border="1"
 +
| SS Exit WIndow Thickness (mm) || Positrons/Million electrons
 +
|-
 +
|0.0  || 1142,1096,1149,1073,1083 = 1109 +/- 35
 +
|-
 +
| 0.25  || 774,836,800,785,798 = 798 +/- 23
 +
|-
 +
|  0.5    ||  693,704,713,697,715 = 704 +/- 10
 +
|-
 +
|  1.0    ||  587,606,548,592,550 =577 +/- 26
 +
|+
 +
|}
  
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]
 
  
MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.
+
;Conclusion 1:  Positron production efficiency improves when the exit window is made thinner
  
[[File:Model.png| 400 px]]
+
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
  
[[File:Tablen1.png| 200 px]]
+
=Background studies=
  
[[File:Tablen2.png| 200 px]]
+
==Brem Spectrum==
  
==Solenoid==
+
Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV.  The photons are 1 cm downstream of the target and intersection a large forward region.
  
 +
[[File:PbBi_Brem_6-10MeV_4-7-16.png | 200 px]]
  
Inner Radiusu=
+
insert photon spacial distributions
  
Outer Radius =
+
Now move the scoring region downstream to a position representing the location of a NaI detector.
 
 
Length =
 
 
 
Current=
 
 
 
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
 
  
 
=Beam Line Design=
 
=Beam Line Design=

Latest revision as of 21:39, 8 June 2016

Development of a Positron source using a PbBi converter and a Solenoid

Conclusions

  1. A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
  2. A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
  3. A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.

Reports

Niowave_Report_11-30-2015


deadline 4/12/16


Niowave_9-2015

Niowave_10-2015

Niowave_11-2015

Niowave_12-2015

Niowave_1-2016

Niowave_2-2016

Niowave_3-2016

Niowave_4-2016

Niowave_5-2016

Niowave_6-2016

Task List

0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.


1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.

compare distributions with and without solenoid.

2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2 for a NaI detector placed at

3.) Experiment, install dipole and solenoid in the tunnel.

Beam Pipe Heating

PbBi_BeamPipeHeatin_2015

Converter target properties

PbBi_NioWave_TargetProperties_2015


Target thickness optimization

PbBi_THickness_CylinderBeam

PbBi_THickness_GaussBeam

PbBi_THickness_PntSource

Solenoid

Uniform ideal Solenoid

PbBi_BeamPipeHeating_w_Solenoid_2015

PbBi_60cmLong_Solenoid_Collection_Efficiency_2015

Positron & Electron event files

PbBi_PosEventFiles_VaccumGaps_2015

PbBi_PosEventFiles_NoGaps_2016

Solenoid Map

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Rear Window Thickness

Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?


Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm. A 0.25 mm thick stainless steel entrance window was used.

Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm. The sensitive detector is a cylinder of radius 11.74 cm.

SS Exit WIndow Thickness (mm) Positrons/Million electrons
0.0 1142,1096,1149,1073,1083 = 1109 +/- 35
0.25 774,836,800,785,798 = 798 +/- 23
0.5 693,704,713,697,715 = 704 +/- 10
1.0 587,606,548,592,550 =577 +/- 26


Conclusion 1
Positron production efficiency improves when the exit window is made thinner
Conclusion 2
You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.

Background studies

Brem Spectrum

Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.

PbBi Brem 6-10MeV 4-7-16.png

insert photon spacial distributions

Now move the scoring region downstream to a position representing the location of a NaI detector.

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations