Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
 
(334 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
Development of a Positron source using a PbBi converter and a Solenoid
 
Development of a Positron source using a PbBi converter and a Solenoid
  
=Converter target properties=
+
=Conclusions=
 +
 
 +
#A 0.3 (0.6)  Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
# A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
#A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.
 +
 
 +
=Reports=
 +
 
 +
[[Niowave_Report_11-30-2015]]
 +
 
 +
 
 +
deadline 4/12/16
 +
 
  
Definition of Lead Bismuth
+
==[[Niowave_9-2015]]==
 +
==[[Niowave_10-2015]]==
 +
==[[Niowave_11-2015]]==
 +
==[[Niowave_12-2015]]==
 +
==[[Niowave_1-2016]]==
 +
==[[Niowave_2-2016]]==
 +
==[[Niowave_3-2016]]==
 +
==[[Niowave_4-2016]]==
 +
==[[Niowave_5-2016]]==
 +
==[[Niowave_6-2016]]==
  
 +
=Task List=
  
1cm diameter target
+
0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.
2 mm thick PbBi
 
  
0.5 Tesla solenoid
 
  
 +
1.)  Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz  for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
  
Desire to know
+
compare distributions with and without solenoid.
  
Emmittance (mrad * mm)
+
2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2  for a NaI detector placed at
  
dispersion (Delta P/P)  (mradian/1000th  mm/1000th)
+
3.) Experiment, install dipole and solenoid in the tunnel.
  
of electrons after the PbBi target.
+
=Beam Pipe Heating=
  
 +
[[PbBi_BeamPipeHeatin_2015]]
  
pole face rotation in vertical plane.
+
=Converter target properties=
  
=G4BeamLine and MCNPX=
 
  
+
[[PbBi_NioWave_TargetProperties_2015]]
==Target thickness optimization==
 
  
===[[PbBi_THickness_GaussBeam]]===
 
  
=== [[PbBi_THickness_CylinderBeam]]===
+
=Target thickness optimization=
  
2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution
+
==[[PbBi_THickness_CylinderBeam]]==
  
G4beamline pencil beam 10 cm radius
+
==[[PbBi_THickness_GaussBeam]]==
<pre>
 
beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
 
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
 
      meanMomentum=10. sigmaE=0. maxR=10.
 
</pre>
 
  
Incident Electron spatial distribution and energy
+
== [[PbBi_THickness_PntSource]]==
  
[[File:PbBi_5-1-15_X-Yposition.png | 200 px]][[File:PbBi_5-1-15_Ein.png | 200 px]]
+
=Solenoid=
  
Positron and Electron Momentum after the converter
+
==Uniform ideal Solenoid==
  
[[File:PbBi_5-1-15_Ppositron.png | 200 px]][[File:PbBi_5-1-15_Pelectron.png | 200 px]]
+
=== [[PbBi_BeamPipeHeating_w_Solenoid_2015]]===
  
{| border="1"
+
===[[PbBi_60cmLong_Solenoid_Collection_Efficiency_2015]]===
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
 
|-
 
| 1    || 1169,1083,1068,1090,1088 =1100<math>\pm</math> 40|| 1091
 
|-
 
| 1.5    || 1723, 1668,1671, 1687,1726=1695<math>\pm</math> 28 || 1728
 
|-
 
| 2    || 1902,1921,1886,1967,1922=1920<math>\pm</math> 30 || 1984
 
|-
 
| 3|| 1920,1880,1883,1864,1857=1881 <math>\pm</math> 24|| 1986
 
|-
 
| 4||1688, 1766, 1712, 1709, 1753=1726<math>\pm</math> 33 || 1858
 
|-
 
| 5||  1569,1585,1509 ,1536,1551=1550<math>\pm</math> 29 || 1646
 
|-
 
| 7|| 1475,1450,1457,1428,1477 =1457<math> \pm</math> 20 || 1541
 
|-
 
| 10|| 1250,1180,1178,1186,1166=1192<math>\pm</math> 33|| 1216
 
|-
 
|}
 
  
[[File:G4Bl-vs-MCNPX_5-5-2015.png| 200 px]]
+
==Positron & Electron event files==
  
===Energy Deposition in Target system (Heat)===
+
[[PbBi_PosEventFiles_VaccumGaps_2015]]
  
 +
[[PbBi_PosEventFiles_NoGaps_2016]]
  
[[File:Layout.png| 400 px]]
+
==Solenoid Map==
  
[[File:ElectronTracks.png| 200 px]][[File:PhotonTracks.png| 200 px]]
+
Inner Radiusu=
  
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]
+
Outer Radius =
  
MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.
+
Length =
  
[[File:Model.png| 400 px]]
+
Current=
  
[[File:Tablen1.png| 200 px]]
+
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
  
[[File:Tablen2.png| 200 px]]
+
=Rear Window Thickness=
  
=== 2mm thick PbBi, 10 MeV,  point source===
 
G4beamline pencil beam 10 cm radius
 
<pre>
 
beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
 
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
 
      meanMomentum=10. sigmaE=0. maxR=10.
 
</pre>
 
  
 +
Question:  Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?
 +
 +
 +
Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long.  A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm.  A 0.25 mm thick stainless steel entrance window was used. 
 +
 +
Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm.  The sensitive detector is a cylinder of radius 11.74 cm.
 +
 +
{| border="1"
 
{| border="1"
 
{| border="1"
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
+
| SS Exit WIndow Thickness (mm) || Positrons/Million electrons
|-
 
| 1    ||  || 1091
 
|-
 
| 1.5    ||  || 1728
 
|-
 
| 2    || 1902<math>\pm</math> 43 || 1984
 
|-
 
| 2.5    ||  || 2062
 
|-
 
| 3|| <math>\pm</math> 13|| 1986
 
|-
 
| 3.5||  || 1938
 
 
|-
 
|-
| 4||<math>\pm</math> 39 || 1858
+
|0.0  || 1142,1096,1149,1073,1083 = 1109 +/- 35
|-
 
| 5||  || 1646
 
|-
 
| 6|| <math> \pm</math> 37 || 1541
 
|-
 
| 10||  || 1216
 
 
|-
 
|-
 +
| 0.25  || 774,836,800,785,798 = 798 +/- 23
 +
|-
 +
|  0.5    ||  693,704,713,697,715 = 704 +/- 10
 +
|-
 +
|  1.0    ||  587,606,548,592,550 =577 +/- 26
 +
|+
 
|}
 
|}
  
==Solenoid==
 
  
 +
;Conclusion 1:  Positron production efficiency improves when the exit window is made thinner
 +
 +
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
 +
 +
=Background studies=
  
Inner Radiusu=
+
==Brem Spectrum==
  
Outer Radius =
+
Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV.  The photons are 1 cm downstream of the target and intersection a large forward region.
  
Length =
+
[[File:PbBi_Brem_6-10MeV_4-7-16.png | 200 px]]
  
Current=
+
insert photon spacial distributions
  
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
+
Now move the scoring region downstream to a position representing the location of a NaI detector.
  
 
=Beam Line Design=
 
=Beam Line Design=
  
 
[[PbBi_BeamLine_Elements]]
 
[[PbBi_BeamLine_Elements]]
 +
 +
=goals for JLab=
 +
 +
  
 
[[Positrons#Simulations]]
 
[[Positrons#Simulations]]

Latest revision as of 21:39, 8 June 2016

Development of a Positron source using a PbBi converter and a Solenoid

Conclusions

  1. A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
  2. A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
  3. A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.

Reports

Niowave_Report_11-30-2015


deadline 4/12/16


Niowave_9-2015

Niowave_10-2015

Niowave_11-2015

Niowave_12-2015

Niowave_1-2016

Niowave_2-2016

Niowave_3-2016

Niowave_4-2016

Niowave_5-2016

Niowave_6-2016

Task List

0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.


1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.

compare distributions with and without solenoid.

2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2 for a NaI detector placed at

3.) Experiment, install dipole and solenoid in the tunnel.

Beam Pipe Heating

PbBi_BeamPipeHeatin_2015

Converter target properties

PbBi_NioWave_TargetProperties_2015


Target thickness optimization

PbBi_THickness_CylinderBeam

PbBi_THickness_GaussBeam

PbBi_THickness_PntSource

Solenoid

Uniform ideal Solenoid

PbBi_BeamPipeHeating_w_Solenoid_2015

PbBi_60cmLong_Solenoid_Collection_Efficiency_2015

Positron & Electron event files

PbBi_PosEventFiles_VaccumGaps_2015

PbBi_PosEventFiles_NoGaps_2016

Solenoid Map

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Rear Window Thickness

Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?


Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm. A 0.25 mm thick stainless steel entrance window was used.

Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm. The sensitive detector is a cylinder of radius 11.74 cm.

SS Exit WIndow Thickness (mm) Positrons/Million electrons
0.0 1142,1096,1149,1073,1083 = 1109 +/- 35
0.25 774,836,800,785,798 = 798 +/- 23
0.5 693,704,713,697,715 = 704 +/- 10
1.0 587,606,548,592,550 =577 +/- 26


Conclusion 1
Positron production efficiency improves when the exit window is made thinner
Conclusion 2
You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.

Background studies

Brem Spectrum

Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.

PbBi Brem 6-10MeV 4-7-16.png

insert photon spacial distributions

Now move the scoring region downstream to a position representing the location of a NaI detector.

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations