Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
 
(399 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
Development of a Positron source using a PbBi converter and a Solenoid
 
Development of a Positron source using a PbBi converter and a Solenoid
  
=Converter target properties=
+
=Conclusions=
  
Definition of Lead Bismuth
+
#A 0.3 (0.6)  Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
# A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
#A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.
  
 +
=Reports=
  
1cm diameter target
+
[[Niowave_Report_11-30-2015]]
2 mm thick PbBi
 
  
0.5 Tesla solenoid
 
  
=G4BeamLine and MCNPX=
+
deadline 4/12/16
  
 
==Target thickness optimization==
 
  
 +
==[[Niowave_9-2015]]==
 +
==[[Niowave_10-2015]]==
 +
==[[Niowave_11-2015]]==
 +
==[[Niowave_12-2015]]==
 +
==[[Niowave_1-2016]]==
 +
==[[Niowave_2-2016]]==
 +
==[[Niowave_3-2016]]==
 +
==[[Niowave_4-2016]]==
 +
==[[Niowave_5-2016]]==
 +
==[[Niowave_6-2016]]==
  
First simple test is to send 1 million, 10 MeV electrons towards a PbBi target and count how many positrons leave the downstream side
+
=Task List=
  
The Random number seed is set by Time in G4beamline to use a different set of pseudo random numbers each time it is run
+
0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.
  
The G4Beamlin incident electron beam has the following properties
 
  
<pre>
+
1.)  Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz  for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
beam gaussian particle=e- nEvents=1000000 beamZ=0.0
 
        sigmaX=1.0 sigmaY=1.0 sigmaXp=0.100 sigmaYp=0.100
 
        meanMomentum=10.0 sigmaP=4.0 meanT=0.0 sigmaT=0.0
 
</pre>
 
  
+
compare distributions with and without solenoid.
{| border="1"
 
{| border="1"
 
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
 
|-
 
-
 
| 1    || 960,874, 916,934,897=916 +/- 33 || 1091
 
|-
 
| 1.5    || 1508 || 1728
 
|-
 
| 2    || 1963,1919,1880,1877,1970 = 1902 <math>\pm</math> 43 || 1984
 
|-
 
| 2.5    || 1997 || 2062
 
|-
 
| 3|| 2233,2250, 2251,2226 , 2222=2236 <math>\pm</math> 13|| 1986
 
|-
 
| 3.5|| 2193 || 1938
 
|-
 
| 4|| 2184,2156,2089,2173,2181=2157 <math>\pm</math> 39 || 1858
 
|-
 
| 5|| 2042 || 1646
 
|-
 
| 6|| 1851, 1932, 1857, 1896,1924 = 1892<math> \pm</math> 37 || 1541
 
|-
 
| 10|| 1480,1488 || 1216
 
|-
 
|}
 
Comparison of G4Beamline and MCNPX
 
  
 +
2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2  for a NaI detector placed at
  
[[File:Comparison.png | 200 px]]
+
3.) Experiment, install dipole and solenoid in the tunnel.
  
 +
=Beam Pipe Heating=
  
Energy Distribution
+
[[PbBi_BeamPipeHeatin_2015]]
  
[[File:TF_PosE_04-28-15.png | 200 px]]
+
=Converter target properties=
[[File:Positrons2.png | 200 px]]
 
  
Angular distribution of positrons
 
  
[[File:TF_Theta_04-28-15.png | 200 px]]
+
[[PbBi_NioWave_TargetProperties_2015]]
  
  
=== 2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution===
+
=Target thickness optimization=
  
 +
==[[PbBi_THickness_CylinderBeam]]==
  
 +
==[[PbBi_THickness_GaussBeam]]==
  
G4beamline pencil beam 10 cm radius
+
== [[PbBi_THickness_PntSource]]==
<pre>
 
beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
 
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
 
      meanMomentum=10. sigmaE=0. maxR=10.
 
</pre>
 
  
{| border="1"
+
=Solenoid=
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
 
|-
 
| 1    ||  || 1091
 
|-
 
| 1.5    ||  || 1728
 
|-
 
| 2    || 1902<math>\pm</math> 43 || 1984
 
|-
 
| 2.5    ||  || 2062
 
|-
 
| 3|| <math>\pm</math> 13|| 1986
 
|-
 
| 3.5||  || 1938
 
|-
 
| 4||<math>\pm</math> 39 || 1858
 
|-
 
| 5||  || 1646
 
|-
 
| 6|| <math> \pm</math> 37 || 1541
 
|-
 
| 10||  || 1216
 
|-
 
|}
 
  
 +
==Uniform ideal Solenoid==
  
[[File:Layout.png| 400 px]]
+
=== [[PbBi_BeamPipeHeating_w_Solenoid_2015]]===
  
[[File:ElectronTracks.png| 200 px]][[File:PhotonTracks.png| 200 px]]
+
===[[PbBi_60cmLong_Solenoid_Collection_Efficiency_2015]]===
  
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]
+
==Positron & Electron event files==
  
I was unable to do anything other than a gaussian beam right now,  I will try to do one later
+
[[PbBi_PosEventFiles_VaccumGaps_2015]]
  
For now I have a gaussian with an 8mm RMS and 10 MeV incident electrons as shown below.
+
[[PbBi_PosEventFiles_NoGaps_2016]]
  
The positron and electron momentum distributions after the PbBi converter are shown below
+
==Solenoid Map==
  
 +
Inner Radiusu=
  
[[File:4-30-2015_PositronMomentum_2mm.png| 200 px]][[File:4-30-2015_ElectronMomentum_2mm.png| 200 px]]
+
Outer Radius =
  
A comma delimited text file with the above events in the format of
+
Length =
  
x,y,z,Px,Py,Pz
+
Current=
  
in units of cm for distance and MeV for momentum is located at
+
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
  
for positrons
+
=Rear Window Thickness=
  
http://www2.cose.isu.edu/~foretony/Positrons_2mm10MeV.dat
 
  
 +
Question:  Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?
  
and
 
  
http://www2.cose.isu.edu/~foretony/Electrons_2mm10MeV.dat
+
Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm.   A 0.25 mm thick stainless steel entrance window was used.
 
 
 
 
for electrons
 
 
 
For now I have a gaussian with an 1mm RMS and 10 MeV incident electrons as shown below.
 
 
 
[[File:4-30-2015_BeamPosDelta.png| 200 px]][[File:4-30-2015_ElectronMomentum.png| 200 px]]
 
 
 
 
 
The positron and electron momentum distributions after the PbBi converter are shown below
 
  
 +
Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm.  The sensitive detector is a cylinder of radius 11.74 cm.
 +
 +
{| border="1"
 +
{| border="1"
 +
| SS Exit WIndow Thickness (mm) || Positrons/Million electrons
 +
|-
 +
|0.0  || 1142,1096,1149,1073,1083 = 1109 +/- 35
 +
|-
 +
| 0.25  || 774,836,800,785,798 = 798 +/- 23
 +
|-
 +
|  0.5    ||  693,704,713,697,715 = 704 +/- 10
 +
|-
 +
|  1.0    ||  587,606,548,592,550 =577 +/- 26
 +
|+
 +
|}
  
[[File:4-30-2015_PositronMomentum_2mmDelta.png| 200 px]][[File:4-30-2015_ElectronMomentum_2mmDelta.png| 200 px]]
 
  
A comma delimited text file with the above events in the format of
+
;Conclusion 1:  Positron production efficiency improves when the exit window is made thinner
  
x,y,z,Px,Py,Pz
+
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
  
in units of cm for distance and MeV for momentum is located at
+
=Background studies=
  
for positrons
+
==Brem Spectrum==
  
http://www2.cose.isu.edu/~foretony/Positrons_2mm10MeVDelta.dat
+
Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.
  
 +
[[File:PbBi_Brem_6-10MeV_4-7-16.png | 200 px]]
  
and
+
insert photon spacial distributions
  
http://www2.cose.isu.edu/~foretony/Electrons_2mm10MeVDelta.dat
+
Now move the scoring region downstream to a position representing the location of a NaI detector.
  
 +
=Beam Line Design=
  
for electrons
+
[[PbBi_BeamLine_Elements]]
  
=== 2mm thick PbBi, 10 MeV,  point source===
+
=goals for JLab=
G4beamline pencil beam 10 cm radius
 
<pre>
 
beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
 
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
 
      meanMomentum=10. sigmaE=0. maxR=10.
 
</pre>
 
  
{| border="1"
 
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
 
|-
 
| 1    ||  || 1091
 
|-
 
| 1.5    ||  || 1728
 
|-
 
| 2    || 1902<math>\pm</math> 43 || 1984
 
|-
 
| 2.5    ||  || 2062
 
|-
 
| 3|| <math>\pm</math> 13|| 1986
 
|-
 
| 3.5||  || 1938
 
|-
 
| 4||<math>\pm</math> 39 || 1858
 
|-
 
| 5||  || 1646
 
|-
 
| 6|| <math> \pm</math> 37 || 1541
 
|-
 
| 10||  || 1216
 
|-
 
|}
 
  
==Solenoid==
 
  
 
[[Positrons#Simulations]]
 
[[Positrons#Simulations]]

Latest revision as of 21:39, 8 June 2016

Development of a Positron source using a PbBi converter and a Solenoid

Conclusions

  1. A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
  2. A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
  3. A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.

Reports

Niowave_Report_11-30-2015


deadline 4/12/16


Niowave_9-2015

Niowave_10-2015

Niowave_11-2015

Niowave_12-2015

Niowave_1-2016

Niowave_2-2016

Niowave_3-2016

Niowave_4-2016

Niowave_5-2016

Niowave_6-2016

Task List

0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.


1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.

compare distributions with and without solenoid.

2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2 for a NaI detector placed at

3.) Experiment, install dipole and solenoid in the tunnel.

Beam Pipe Heating

PbBi_BeamPipeHeatin_2015

Converter target properties

PbBi_NioWave_TargetProperties_2015


Target thickness optimization

PbBi_THickness_CylinderBeam

PbBi_THickness_GaussBeam

PbBi_THickness_PntSource

Solenoid

Uniform ideal Solenoid

PbBi_BeamPipeHeating_w_Solenoid_2015

PbBi_60cmLong_Solenoid_Collection_Efficiency_2015

Positron & Electron event files

PbBi_PosEventFiles_VaccumGaps_2015

PbBi_PosEventFiles_NoGaps_2016

Solenoid Map

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Rear Window Thickness

Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?


Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm. A 0.25 mm thick stainless steel entrance window was used.

Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm. The sensitive detector is a cylinder of radius 11.74 cm.

SS Exit WIndow Thickness (mm) Positrons/Million electrons
0.0 1142,1096,1149,1073,1083 = 1109 +/- 35
0.25 774,836,800,785,798 = 798 +/- 23
0.5 693,704,713,697,715 = 704 +/- 10
1.0 587,606,548,592,550 =577 +/- 26


Conclusion 1
Positron production efficiency improves when the exit window is made thinner
Conclusion 2
You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.

Background studies

Brem Spectrum

Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.

PbBi Brem 6-10MeV 4-7-16.png

insert photon spacial distributions

Now move the scoring region downstream to a position representing the location of a NaI detector.

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations