Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
 
(469 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
Development of a Positron source using a PbBi converter and a Solenoid
 
Development of a Positron source using a PbBi converter and a Solenoid
 +
 +
=Conclusions=
 +
 +
#A 0.3 (0.6)  Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
# A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
 +
#A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.
 +
 +
=Reports=
 +
 +
[[Niowave_Report_11-30-2015]]
 +
 +
 +
deadline 4/12/16
 +
 +
 +
==[[Niowave_9-2015]]==
 +
==[[Niowave_10-2015]]==
 +
==[[Niowave_11-2015]]==
 +
==[[Niowave_12-2015]]==
 +
==[[Niowave_1-2016]]==
 +
==[[Niowave_2-2016]]==
 +
==[[Niowave_3-2016]]==
 +
==[[Niowave_4-2016]]==
 +
==[[Niowave_5-2016]]==
 +
==[[Niowave_6-2016]]==
 +
 +
=Task List=
 +
 +
0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.
 +
 +
 +
1.)  Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz  for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.
 +
 +
compare distributions with and without solenoid.
 +
 +
2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2  for a NaI detector placed at
 +
 +
3.) Experiment, install dipole and solenoid in the tunnel.
 +
 +
=Beam Pipe Heating=
 +
 +
[[PbBi_BeamPipeHeatin_2015]]
  
 
=Converter target properties=
 
=Converter target properties=
  
Definition of Lead Bismuth
 
  
 +
[[PbBi_NioWave_TargetProperties_2015]]
 +
 +
 +
=Target thickness optimization=
 +
 +
==[[PbBi_THickness_CylinderBeam]]==
 +
 +
==[[PbBi_THickness_GaussBeam]]==
 +
 +
== [[PbBi_THickness_PntSource]]==
 +
 +
=Solenoid=
 +
 +
==Uniform ideal Solenoid==
 +
 +
=== [[PbBi_BeamPipeHeating_w_Solenoid_2015]]===
 +
 +
===[[PbBi_60cmLong_Solenoid_Collection_Efficiency_2015]]===
 +
 +
==Positron & Electron event files==
 +
 +
[[PbBi_PosEventFiles_VaccumGaps_2015]]
 +
 +
[[PbBi_PosEventFiles_NoGaps_2016]]
 +
 +
==Solenoid Map==
 +
 +
Inner Radiusu=
 +
 +
Outer Radius =
 +
 +
Length =
 +
 +
Current=
  
1cm diameter target
+
Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave
2 mm thick PbBi
 
  
0.5 Tesla solenoid
+
=Rear Window Thickness=
  
=G4BeamLine and MCNPX=
 
  
   
+
Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?
==Target thickness optimization==
 
  
  
First simple test is to send 1 million, 10 MeV electrons towards a PbBi target and count how many positrons leave the downstream side
+
Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long.  A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm.  A 0.25 mm thick stainless steel entrance window was used. 
  
 +
Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm.  The sensitive detector is a cylinder of radius 11.74 cm.
 +
 +
{| border="1"
 
{| border="1"
 
{| border="1"
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
+
| SS Exit WIndow Thickness (mm) || Positrons/Million electrons
|-
 
| 1    || 960 ||
 
|-
 
| 2    || 1963 || 1984
 
 
|-
 
|-
| 3|| 2233 ||
+
|0.0  || 1142,1096,1149,1073,1083 = 1109 +/- 35
|-
 
| 4|| 2184 ||
 
|-
 
| 5|| 2042 ||
 
|-
 
| 6|| 1851 ||
 
|-
 
| 10|| 1480 ||
 
 
|-
 
|-
 +
| 0.25  || 774,836,800,785,798 = 798 +/- 23
 +
|-
 +
|  0.5    ||  693,704,713,697,715 = 704 +/- 10
 +
|-
 +
|  1.0    ||  587,606,548,592,550 =577 +/- 26
 +
|+
 
|}
 
|}
  
==Solenoid==
+
 
 +
;Conclusion 1:  Positron production efficiency improves when the exit window is made thinner
 +
 
 +
;Conclusion 2 : You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.
 +
 
 +
=Background studies=
 +
 
 +
==Brem Spectrum==
 +
 
 +
Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV.  The photons are 1 cm downstream of the target and intersection a large forward region.
 +
 
 +
[[File:PbBi_Brem_6-10MeV_4-7-16.png | 200 px]]
 +
 
 +
insert photon spacial distributions
 +
 
 +
Now move the scoring region downstream to a position representing the location of a NaI detector.
 +
 
 +
=Beam Line Design=
 +
 
 +
[[PbBi_BeamLine_Elements]]
 +
 
 +
=goals for JLab=
 +
 
 +
 
  
 
[[Positrons#Simulations]]
 
[[Positrons#Simulations]]

Latest revision as of 21:39, 8 June 2016

Development of a Positron source using a PbBi converter and a Solenoid

Conclusions

  1. A 0.3 (0.6) Tesla Solenoid with a diameter to allow a 9.74 (3.94) cm diameter pipe would collect a positron per thousand incident electrons on a 2mm thick LBE target with 0.25 mm thick SS windows.
  2. A 15 cm long, 0.2 Tesla solenoid with a 3.94 diameter beam pipe would collect a positron per two thousand electrons impinging a 2mm thick LBE target with 0.25 mm thick SS windows.
  3. A 4 Tesla Solenoid will remove beam pipe heating from scattered electrons downstream of the target when using a 3.94 cm diameter beam pipe.

Reports

Niowave_Report_11-30-2015


deadline 4/12/16


Niowave_9-2015

Niowave_10-2015

Niowave_11-2015

Niowave_12-2015

Niowave_1-2016

Niowave_2-2016

Niowave_3-2016

Niowave_4-2016

Niowave_5-2016

Niowave_6-2016

Task List

0.) 34.8 mm pipe, 0.0 -> 0.5 Tesla, E= 6,8,10 MeV.


1.) Create a positron (10,000 positrons) and electron event file containing t,x,y,z,Px,Py,Pz for positrons exiting the solenoid and an incident Gaussian beam 1cm in diameter and with a sigma of 1cm.

compare distributions with and without solenoid.

2.) Determine the back ground when using a 3.48 diameter beam pipe and Solenoid field of 0.2 for a NaI detector placed at

3.) Experiment, install dipole and solenoid in the tunnel.

Beam Pipe Heating

PbBi_BeamPipeHeatin_2015

Converter target properties

PbBi_NioWave_TargetProperties_2015


Target thickness optimization

PbBi_THickness_CylinderBeam

PbBi_THickness_GaussBeam

PbBi_THickness_PntSource

Solenoid

Uniform ideal Solenoid

PbBi_BeamPipeHeating_w_Solenoid_2015

PbBi_60cmLong_Solenoid_Collection_Efficiency_2015

Positron & Electron event files

PbBi_PosEventFiles_VaccumGaps_2015

PbBi_PosEventFiles_NoGaps_2016

Solenoid Map

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Rear Window Thickness

Question: Will a thicker downstream exit window increase the positron production efficiency by providing more material for a brehm photon to pair produce in?


Positrons were counted exiting a ideal 0.2 Tesla solenoid that was 15 cm long. A ten MeV electron beam with a 0.5 cm cylindrical radius impinged a 2mm thick PbBi liquid target that had a surface area of 2.54 cm x 2.54 cm. A 0.25 mm thick stainless steel entrance window was used.

Target is at -106 mm, entrance SS window is at -108.25 mm , exit SS window is at -103.75 mm, A sensitive detector for positron is placed at Z= +44mm. The sensitive detector is a cylinder of radius 11.74 cm.

SS Exit WIndow Thickness (mm) Positrons/Million electrons
0.0 1142,1096,1149,1073,1083 = 1109 +/- 35
0.25 774,836,800,785,798 = 798 +/- 23
0.5 693,704,713,697,715 = 704 +/- 10
1.0 587,606,548,592,550 =577 +/- 26


Conclusion 1
Positron production efficiency improves when the exit window is made thinner
Conclusion 2
You loose about 28 +/- 4 % of the positrons in the 0.25 mm thick SS exit window.

Background studies

Brem Spectrum

Below is the photon energy distribution (from Brem & pair production) using a 2mm Pb target for two different incident electron energies; 6 and 10 MeV. The photons are 1 cm downstream of the target and intersection a large forward region.

PbBi Brem 6-10MeV 4-7-16.png

insert photon spacial distributions

Now move the scoring region downstream to a position representing the location of a NaI detector.

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations