Difference between revisions of "Neutron TGEM Detector Abdel"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
Haithem's logbook for developing neutron sensitive TGEM detector
+
[[HM_2014]]
  
 +
[[2012]]
  
=1/23/09=
+
[[2011]]
  
== image==
+
[[2010]]
  
[[Image:Generic_SideView_GEMDetector.jpg]]
+
[[2009]]
  
1.) Search the web for patent which coats GEM detector with neutron sensitive materials.  I think it is for Thermal neutrons.
+
=Dissertation=
  
 +
;11/01/2015
  
Materials of high neutron capture cross section are studied widely, an example is the  following patent
+
Measurements
[[http://wiki.iac.isu.edu/index.php/Image:Detector.pdf]]
 
  
  
Most of the high neutron capture cross section materials were measured for different neutron energies. A comprehensive work is published in 2000. The project was supported by Korea Atomic Energy Research Institute and Brookhaven National Laboratory [[http://wiki.iac.isu.edu/index.php/Image:Different_cross_sections.pdf]]
+
[[File:measurements_1.pdf]]
 +
[[File:measurements_2.pdf]]
 +
[[File:measurements_3.pdf]]
  
U-235 is the one of the best choices since it has a high neutron fission cross section and a long half life compared to other the other isotopes that may come under choice.
 
  
A second choice is Th-238 and U-238 which have  fission cross section less than that of U-235 but still good for our experiment.[[http://wiki.iac.isu.edu/index.php/Image:Fission_cross_section_for_U238%2CTh238.pdf]]
 
  
 +
Conclusion
  
 +
[[File:conc.pdf]]
  
 +
=alpha calibration=
  
 +
[[File:ch_alphaE.png | 150px]]
  
A boron coated GEM foil is being made by the company below
 
http://n-cdt.com/
 
  
Another method uses BF3.
+
[[File:Raw_data_all.pdf]]
  
We are interested in a fissionable material coated onto the copper foils that is thin enough to allow the fission fragments to escape the foil and ionize the gas in the detector.
 
  
 +
The main peaks are for the following channel numbers,
  
2.) Search for companies which use either sputtering or coating technology to apply the above material to caopper PCboards with hole int them such that the material does not fill up the hole. Hole diameter = ?
+
You need to redo these plots in publication quality with proper axis labels containing units.
  
The material sputter onto the copper would have thickness on the order of Angstroms.
+
[[File:ch_alphap1.png | 150px]]
 
+
[[File:ch_alphap2.png | 150px]]
The TGEM PCboard would have a surface area of 10 cm x 10 cm.
 
 
 
3.) Current neutron efficiency plots for several detector
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_He3_Tube_PND_INL.jpg | 200 px]]
 
 
 
[[Media:NeutronDetectionEfficiency-vs-Energy_Ne-213_BaF.pdf]]
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_BC-408_Scintillator.jpg | 200 px]]
 
 
 
[[Image:NeutronDetectionEfficiency-vs-Energy_GEM_BoronCoatedFoil_Neutron_Efficiency.jpg| 200 px]]
 
 
 
=1/30/09=
 
 
 
1.) Investigate if Thorium Oxide will be a good candidate for the fission chamber. You would use electrolysis to coat a TGEM board.
 
 
 
Ways to make thorium fission chamber
 
 
 
2.) Find reference for THGEM9, this was used to determine optimal THGEM design 2 years ago
 
 
 
GEM-copper plate has dimensions of 3X3cm or 10X10cm with thinkness 5 micrometer copper layers.It has holes with diameter 60-80 micrometer.[http://wiki.iac.isu.edu/images/0/0f/01352098.pdf (From Operation of a triple GEM detector with CsI photocathode in pure BF4)]
 
 
 
=2/6/09=
 
 
 
Thin deposition  ThO2  molecular plating
 
 
 
 
 
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJM-4S03R9J-C&_user=489297&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000023739&_version=1&_urlVersion=0&_userid=489297&md5=cd4314aa4ce529c19369900da39fbbe1
 
 
 
=2/13/09=
 
 
 
Check if the people below can deliver Th coated Al or Cu sheets , coating thickness smaller than 5 micron, the thinner the better.
 
http://www-wnt.gsi.de/tasca/
 
 
 
=2/20/09=
 
 
 
2.5 x 2.5 cm thorium coated TGEM cards coated by ISU chemistry.
 
 
 
chemistry Department cant not do the sputtering for safety purposes, they like to avoid radiation contamination.
 
 
 
Need a mask for the predrilled TGEM cards to prevent Thorium from entering holes
 
 
 
 
 
Radioactive waste procedure if we are allowed to sputter in chemistry.
 
 
 
 
 
Write report describing the process we want to do. 
 
 
 
[[ThoriumPlatingTGEMproposal]]
 
 
 
Radioactiving of Thorium may be a stumbling blog because of waste generated.
 
 
 
If we go for non-radioactive materials look up fission X-sect for [http://www.americanelements.com/bifoil.html Bismuth] and [http://www.americanelements.com/dyfoil.html Dysprosium]
 
 
 
Fission cross section for Bi starts to be effective when the neutron energy is more than the range of interest.
 
 
[[Image:Neutron_induced_fission_cross_section_for_Bi.jpg | 200 px]]
 
 
 
 
 
Dy-isotopes are very good for absorbing neutrons in the range between 0.01- 10 MeV.
 
 
 
[[Image:Dy_neutron_cross_sections.jpg | 200 px]]
 
 
 
[[Media:Zaidi_RadChem_vol93_2005.pdf]]
 
 
 
=2/27/09=
 
 
 
1.) Dysprosium (Dy) makes a lot of gammas and maybe 100 less alphas
 
 
 
 
 
2.) Don't give up trying to make thorium coated materials
 
 
 
try to send e-mail to one of these authors
 
 
 
N. Takahashi, Zeitschrift für Physik A Hadrons and Nuclei
 
Volume 353, Number 1 / March, 1995
 
 
 
3.) Fission cross-section n,f for Tb
 
 
 
=3/13/09=
 
 
 
1.) look for a company that does resistive evaporative coatings
 
 
 
This company sells the machine
 
http://www.lesker.com/newweb/Deposition_Sources/ThermalEvaporationSources_Resistive.cfm
 
 
 
2.)(n,f) X-sect for  Dysprosium (Dy) ?
 
 
 
 
 
3.) Thorium and thorium oxide thin films (19 to 61 nm thick) were RF-sputtered onto mirrors. RF sputtering onto copper plates?
 
 
 
 
 
 
 
The neutron fission cross sections of 92235U and 92238U between 0.3 and 12.5 MeV
 
W W Osterhage et al 1978 J. Phys. G: Nucl. Phys. 4 587-595
 
 
 
http://www.inf.uu.se/Reports/publications.html
 
 
 
Neutron-induced fission cross sections of natPb and 197Au in the 45-180 MeV region,
 
V.P. Eismont, A.V. Prokofiev, A.N. Smirnov, S.M. Soloviev, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg
 
Conference Proc. ADTTA99, 1999, (in press).
 
 
 
Up-to-date status and problems of the experimental nucleon-induced fission cross section data base at intermediate energies,
 
V.P. Eismont, A.V. Prokofiev, A.N. Smirnov, I.V. Ryzhov, G.A. Tutin, H. Cond, K. Elmgren, N. Olsson and P.-U. Renberg,
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Neutron-induced fission cross section ratios of 209Bi and 238U at 75 and 96 MeV,
 
V.P. Eismont, A.V. Kireev, I.V. Ryzhov, S.M. Soloviev, G.A. Tutin, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg,
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Neutron-induced fission fragment angular distribution of 238U at 96 MeV,
 
V.P. Eismont, A.V. Kireev, I.V. Ryzhov, S.M. Soloviev, G.A. Tutin, H. Condé, K. Elmgren, N. Olsson and P.-U. Renberg
 
Proc. ADTTA99, 1999, (in press).
 
 
 
Measurements of neutron-induced fission cross sections of heavy nuclei in the intermediate energy region,
 
V.P. Eismont, A.V. Prokofyev, A.N. Smirnov, K. Elmgren, J. Blomgren, H. Condé, J. Nilsson, N. Olsson and E. Ramström,
 
Accelerator-Driven Transmutation Technologies and Applications, Kalmar, ed. H. Condé (Uppsala: Uppsala University, 1997) p 606-612.
 
 
 
=4/2/09=
 
Summury of events through the last two weeks:
 
1- Looking for a neutron fission cross section for Dyspromium.
 
 
2- Looking for other possile elements that can be sued beside our choices for Thorium and Dysprosium.
 
    these elemets should  have a high neutron cross for fission (n,f),(n,gamma),(n,p) or (n,alpha).
 
 
 
3- Using Neutrons cross sections (by D. Hughes and R. Schwartz, 2nd edition, 1957) as comphensive reference for our choice.
 
 
 
'''
 
== Comparison between Thorium and Dysprosium ==
 
.'''
 
 
 
Thorium: chacterized by relatively high neutron fission cross for both of its isotopes (Th-232 nad Th-230) compared to the stable elements but it is one of low fission cross sections compared to radioctive actinides. A lot of efforts are spent even in coating or finding the appropriate place or group to do that, since most of people are totally disencouraged to coat radioctive elements.
 
 
 
[[Image: Table_of_different_neutron_fission_cross_11MeV_-_13_MeV.jpg| 300 px]]  [[Image:Th-232_fission_cross_section.jpg | 300 px]]
 
 
 
 
 
Dysprosium: radioactively stable,it has 5 isotopes Dy-160, 161, 162, 163 and 164.  It is one of the best elements for detecting the neutrons because of  high neutron capture cross section in the energy range of interest.
 
 
 
[[Image: total and capture neutron cross sections for dy- 160 until 20 mev.jpg  | 200 px]] [[Image:total and capture neutron cross sections for dy- 161 until 20 mev.jpg | 200 px]][[Image:total and capture neutron cross sections for dy- 162 until 20 mev.jpg  | 200 px]]  [[Image:total and capture neutron cross sections for dy- 163 until 20 mev.jpg  | 200 px]][[Image: total and capture neutron cross sections for dy- 164 until 20 mev.jpg  | 200 px]]
 
 
 
Also dysprosium pulls out alpha paticles (σ(n,α)= 3.6 mb at 14.2 MeV).
 
 
 
== Other Possible Elements ==
 
.'''
 
Generally,the highest values for neutron cross sections (σ(n,f), σ(n,p), σ(n,γ) and σ(n,α)) are for radioactive isotopes, which are not desirable for coating. Fortunately, there are non- radioactive elements have a relatively high neutron cross sections, for example:
 
 
 
σ(n,γ) at 0.025 MeV (in mb): Gd-158(710(70)),  Sm-152 (670(100)),  Br-81 (550(55)),  Sm-154 (530(70)),  Ce-142 (425(45)),
 
 
 
Hf-180(440(70)),  Ru-96(320(60)),  Ru-102 (390(40)),  W-186 (300(40)),  Zr-96 (240(40)),  Hg-202(57(13))
 
 
 
 
 
σ(n,γ) at 1 MeV (in mb): Re-185(180),  (390(40)),  Ru-102 (30), Ru-104 (31),  Hg-204(100), Br-81 (17)
 
 
 
 
 
σ(n,γ) at 14.5 MeV (in mb):  Gd-160 (19(5)),  Zr-96 (<4),
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Element || X-sect (mb)
+
|channel Number|| Energy Upper limit (MeV)|| Energy lower limit (MeV)|| average energy (MeV)|| Notes
|-
 
| Re-185 ||180
 
 
|-
 
|-
| Ru-102 ||390
+
| 4828 || 4.90 || 4.79 || 4.85 +_ 0.02 || 
 
|-
 
|-
 
+
| 4869 || 4.94 || 4.83 || 4.88 +_ 0.02 ||
 
 
 
|}
 
|}
  
=4/3/09=
+
=Gamma Spectrum for U-233=
 
 
1.) Derive equations for voltages at each GEM stage and the net current for our voltage network and check them with measured values for the 4kV version of the voltage network.
 
 
 
2.) Reference [J.C. hadler, Radiation Measurements Vol 43 (2008) pf S334-S336] says
 
 
 
# R = 14 \mu m = mean range of fission fragment6s in U_3 O_8
 
#R= 12 um for UO_3
 
#0.1 um thickness U( Th) will reduce mean length of fission tracks by 2%
 
 
 
3.) Plot N -vs- d using Equation 2 of Reference [J.C. hadler, Radiation Measurements Vol 43 (2008) pf S334
 
The number of particles per unit area is given by the equation:
 
  <math>N = 2/d *(1 - d/12.07) + 1/12.07 </math>
 
d : the thickness in (um)
 
 
 
The range of the fragments in the emulsion is 12.07 um
 
[[Image:fragment vs thickness (Hudler).jpg]]
 
 
 
 
 
=4/17/09=
 
A call conference with Dr.Wolfe, As result, the following is considered as next step for the project:
 
 
 
1- Check the melting temperature that a PC boeard can hold ( the size of the chamber can hold the 10 X 10 PC board ).
 
   
 
    The experiment is done, the temperature in average was aroubd 305oC, the PC board can hold that temperature easily,
 
the PC board was just burned since the medium around is O2, but there is one thing I want ot be sure of, if the PC board has a very light layer of certain material covers its surface and can't hold up that temeperature?
 
   
 
  An experiment is done today (4/30/09) to check the PC board behavior at 350oC.
 
  A peace of copper sticked by normal used glue.
 
[[Image:PC-board 1.jpg| 200 px]] 
 
    PC boeard can't hold up the temperature 350oC.
 
[[Image:PC board_3.jpg| 200 px]]
 
 
 
 
 
  
 
+
[[File:gamma_spect.png | 150px]]
2- Checking from a vender for chunk bulk ThF4 with size min. 30 cc.
 
  
3- Checking the thermal properties of ThF4 specially the melting point and if Thorium is adhere to copper in that temperature.
+
= Last runs=
  
4- A mask should be prepared from stainless steal (Al is not preferable),inaddtion to thinking of drilling process and who   
 
    is going to do it.
 
 
 
Laser machining can cut 1" stainless steel sheets
 
 
5- Dr. Forest is going to send the email after collecting all the information needed to Dr. Wolfe.
 
 
Coaing process is going to be by electron beam, thorium should be heated to 1750 C. (the melting point for pure Th).
 
 
 
 
Until this point the uniformity of the surface is not an important factor, but I think it would be important whenever we start thinking of the track and the direction for Th fission fragments.
 
 
=4/23/09=
 
 
1- Check the melting temperature that a PC board can hold ( the size of the chamber can hold the 10 X 10 PC board ).
 
 
Basically FR-4, FR-1, CEM-1 or CEM-3 PCB are made of polytetrafluoroethylene which has
 
(327 °C (620.6 °F))as a melting point.
 
 
The experiment is done, the temperature in average was around 305 °C, the PC board can hold that temperature easily,the PC board was just burned since the medium contains O2, but there is one thing I want to be sure of, if the PC board has a very light layer of certain material covers its surface?
 
 
 
 
2- Checking from a vender for chunk bulk ThF4 with size min. 30 cc.
 
 
http://www.element-collection.com/RGB_Elements_OCT04_rev05.pdf
 
  Element-collection sells thorium with 190$/gram !
 
 
3- Will Thorium adhere to copper
 
 
Thorium flouride is used for optical purposes, according the technical applications they have a number of recommendations related to sputtering by E-beam, and other materials that helps in thorium flouride adhesion.[http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078]
 
 
Looks there is a little change, Dr. Forest is going to check a vendor for U-238, which has a better fission cross section (3 times higher compared to Th-232),in addition to , the high price for Th-232 and risk of having flakes after sputtering, Throium by itself does not adhere with the surfaces unless other materials are used through the sputtering process (as methioned in the case of coating glass with thorium fluoride).
 
 
=5/1/09=
 
 
1.)  Results from PCboard heating test: Board melts at 350 but not 310 degrees Celcius (Documents suggest 327 as the melting point.)
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| Before heating to 350<math>^o C</math> ||After Heating to 350<math>^o C</math>
+
|Run Number||start || end || Time (min) || Shutter || Source ||  Count rate (counts/min) || Notes
 
|-
 
|-
| [[Image:PC-board 2.jpg | 200 px]] ||[[Image:PC board_6.jpg| 200 px]]
+
|9005 || 05/15 15:00 || 05/16 10:55 || || open || off || 50 ||  
 
|-
 
|-
| Before heating to 298<math>^o C</math> ||After Heating to 298 <math>^o C</math>
+
|9006 || 05/16 10:57 || 05/17 22:18  || || open || on ||  48||
 
|-
 
|-
| [[Image:PC board before 298.jpg | 200 px]] ||[[Image:PC-board  at 298.jpg| 200 px]]
+
|9007 || 05/17 22:23 ||  05/18 19:20 || || closed || on || 30 ||
|}
+
|-
 
+
|9008 || 05/18 21:46 ||  05/19 19:59 || || closed || off || 30 || high beta effect
The experiment is done on the PC-board, it was heated for an hour under 298°C.
+
|-
The result is shown by the second photo, looks that PC-board should be replaced by another material that can hold this temeperature for longer time.
+
|9010 || 05/21 23:23 || 05/22 10:00 || || closed || off || 30 || high beta effect
 
+
|-
2.) Oak Ridge will give us 1 kg of metal Th-232. We pay for shipping and we need to do rad licenses. Dr. Forest e-mail Dr. Brey and the paper work is beginning.
+
|9023 || 05/26 13:06 || 05/26 13:17|| 11 || open || off || 87 ||  GEM2.9kV 3.6kV
 
+
|-
Contact info
+
|9024 || 05/26 13:20 || 05/26 13:27|| 7 || closed || off || 26 ||  GEM2.8kV 3.5kV (beta effect decreased)
 
+
|-
Lloyd J. Jollay
+
|9032 || 06/13 12:35 || 06/13 12:45|| 10 || open || off || 87 ||  GEM2.8kV 3.5kV (ISU power shutdown)
Manager Nuclear Technology and Nonproliferation
+
|-
Y-12 National Security Complex
+
|9033 || 06/13 12:35 || 06/13 12:45|| 10 || closed || off || 26 || GEM2.8kV 3.5kV
P.O. Box 2009
+
|-
Oak Ridge, TN 37831-8112
+
|9034 || 06/15 20:55 || 06/15 21:05|| 10 || open || off || 45 ||  GEM2.8kV 3.5kV
Office: 865-241-1872
+
|-
Fax: 865-574-5169
+
|9035 || 06/15 21:06 || 06/13 21:16|| 10 || closed || off || 27 ||  GEM2.8kV 3.5kV
Pager: 865-873-9146
+
|-
Mobile: 865-206-9663
+
|9036 || 06/17 14:48 || 06/17 14:58|| 10 || closed || off || 28 || GEM2.8kV 3.5kV
 
 
3.) Laser cutting can do up to 1" thick stainless steel sheets, we can make a mask!  Need to learn CAD to create a drawing of the mask which will be uploaded to the laser cutting machine.  make tolerances around 500 micron (1/2 mm).
 
  Insert picture of our GEM PC board with a table of distances.
 
 
 
4.) Meting Point for U-238 =?
 
 
 
Melting Point: 1408 K (1135°C or 2075°F). Boiling Point: 4404 K (4131°C or 7468°F)
 
 
 
=5/8/09=
 
 
 
1.) It appears the FR-7 melts at 220 celsius so we may not be able to coat copper clad FR4 with U-28 or Th-232. This means we will most likely coat a copper sheet which is attached to a frame for tension and then laminate FR4 after we have coated the copper sheet with U-28 or The-232.
 
 
 
  Determine melting point of our current PC boards.
 
 
 
Melting point for the PC board is 260 degrees Celsius,within this degree  a change took place in the shape of the board which will make the possibility to use it for sputtering process is very little, the color of the PC-board starts to change at 200 degrees Celsius.
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| 200 <math>^o C</math> ||210 <math>^o C</math> || 260 <math>^o C</math>
+
|9037 || 06/17 14:59 || 06/17 14:09|| 10 || open || off || 28 ||  GEM2.8kV 3.5kV
 
|-
 
|-
| [[Image: PC_200.jpg | 200 px]]|| [[Image:PC board at 210 degrees.jpg | 200 px]] ||[[Image:PC _ 260.jpg| 200 px]], [[Image:PC _ 260 top.jpg| 200 px]]
 
 
|}
 
|}
  
2.) The distance between holes in the TGEM appear to be 1mm.  A laser can cut through 1" of stainless steel.  What accuracy can the laser have when cutting through the thinnest available SS we want to use for a mask.
+
The charge spectrum returned to were it was before the neutron exposure after 29 days for closed shutter.
 
 
  Find laser resolution (200 microns?)
 
 
 
The following company [http://http://www.mlpc.com/laser_micromachining.php?_kk=laser%20micro%20cutting&_kt=fa43fe73-ceb7-4705-9bf9-1e815ddaaf69&gclid=CKiRwd_2z5oCFRMUagodAHZK2g] can reach to a tolerance of 10 micrometer if the thickness of the plate is bigger than 300 micrometer, in our case the thickness of copper foil is 45 micrometer, and the hole is diameter is 1 mm, a tolerance of 200 micrometer is going to be good for the drilling the holes and doing the mask. an email from the company will confirm the expectations.
 
 
 
  Determine thinnest SS mask
 
 
 
still waiting for the email.
 
 
 
 
 
3.) HV distribution chain calculation.  Low voltage version?
 
 
 
Order resistors based on power calculation, work with Tumuna on the order.
 
 
 
4.) Install GEANT4 in your Inca account, Start GEANT4 Fission model (CHIPS or GEISHA).
 
 
 
=5/15/09=
 
 
 
1.) Insert picture of PCboard at 220 and 260 and denote time spent at that temperature.
 
 
 
 
 
2.) The distance between holes in the TGEM appear to be 1mm and are staggered between rows.  A laser can cut through 1" of stainless steel.  We would like a laser with position accuracy to at least 100 microns (4 mils :1000 mils = 1 in)  which can drill a hole whose diameter is accurate to 4 mils.  What accuracy can the laser have when cutting through the thinnest available SS we want to use for a mask.
 
 
 
  Find laser resolution (10 microns?)
 
 
 
  Determine thinnest SS mask
 
 
 
 
 
 
 
3.) HV distribution chain calculation.  Low voltage version?
 
 
 
Look at the following diagram :[[Media:GEM_HV_circuit.ps]] 
 
 
 
<math> I = I_{11} + I_1^{\prime}</math>
 
 
 
 
 
<math>I_{11} \times R_8 - I_1^{\prime} R_2 = 0 </math>
 
 
 
  
<math> I_{11} \times R_3 + I_2^{\prime} R_4 = 0</math>
+
=QDC TDC PS-ADC setup=
  
 +
;Peak sensing gate
  
<math>  I_{11}= I_{22}  + I_2^{\prime}</math>
+
[[File: GEM_PS_gate.png | 300 px]]
  
 +
;QDC gate
  
 +
[[File: GEM_QDC_gate.png | 300 px]]
  
<math> -I_2^{\prime} \times R_4 + I_{22} \times \frac{R_9 \times R_{10}}{ R_9 + R_{10}} = 0 </math>
 
  
 +
;TDC start
  
<math>I_{22} \times R_{11} - I_3^{\prime} R_{12} = 0 </math>
+
[[File: TDC_pulser.png | 300 px]]
  
  
<math>  I_{22}= I_{33}  + I_3{\prime}</math>
+
;TDC STOP
  
 +
[[File: TDC_GEM.png | 300 px]]
  
<math>- I_3^{\prime} R_{12} + I_{33} \times \frac{R_{13} \times R_5}{ R_{13} + R_5}  = 0 </math>
+
;QDC shows a difference
  
 +
[[File: QDC_source_on_off_7724_7726.png | 300 px]]
  
<math> V_{in} - I_{11} \times (R_8 +R_3) - I_{22}\times\left( \frac{R_{10} \times R_9}{ R_{10} + R_9} +R_{11} \right) -  I_{33} \times\left ( \frac{R_{13} \times R_5}{ R_{13} + R_5} +R_7 \right )= 0 </math>
+
=Measurements of the frequently used gas mixture 90/10 Ar/CO2 for the second peak =
  
 +
;Changes from the former set up
  
 +
# Using the eG&G timing filter amp. 474 instead of the spectroscopic amp. to amplify the input for the peak sensing ADC.
 +
#Gate of a width of 4us has been delyed to track the second peak, as a result part of output spectrum is lost except for the delayed part within the gate width as shown in the figures below:
  
<center>[[Image:GEM_HV_Dist_Net.jpg | 200px]]</center>
+
;Lost
  
Order resistors based on power calculation, work with Tumuna on the order
+
[[File: PS_l1.png | 300 px]]
  
4.)GEANT4 is installed in Inca account, ExampleN02 was compiled and runs.
+
;Detected
  
  
 +
[[File: PS_d1.png | 300 px]][[File: PS_d2.png | 300 px]]
  
Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
  
=5/22/09=
 
 
1.) heat PC board for 3 hours at 210C
 
 
 
2.) Determine laser resolution for a 45 micron thick copper sheet
 
 
 
 
3.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
4.) Going to order 25 resisters of each Ohm setting.  Prepare a HV board for stuffing and assemble after resistors arrive.
 
 
5.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
=6/9/09=
 
 
 
1.) Write a brief description ( 2 paragraphs) of the experimental objectives and methods with justification for the specific radionuclides and quantities.
 
 
We propose constructing a fission chamber which contains copper PCboards coated with U-238 and Th-232.  Our goal is to construct a fast neutron detector.  A safe in the LDS will serve as a repository for the U-238 and Th-232 bulk material.  A small fraction of the material (100 g) will be sent to a collaborator at another University who will use Electron Beam-Physical Vapor Deposition to coat a 10 cm x 10 cm PCboard with U-28 or Th-232.  The radioactive material will be a 5 micron or less coating attached to the PCboard.  The PCboard will reside inside a gaseous detector.  The quantities of each bulk material are given in the table below.  Oak Ridge national Lab will supply 1kg of Th-232 at no cost.  Unfortunately, 1kg is the smallest size available. 
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
| U-238 || Th-232
+
|Run Number||Date || start || end || Time (min) || Shutter || Source ||  Count rate (counts/min) || Notes
 +
|-
 +
|7435 || 08/24/14|| 19:30:48 || 19:55:32 || || open || on || 400 || a peak is noticed on channel 400
 +
|-
 +
|7436 || 08/24/14|| 19:59:05 || 20:40:11 || || open || off || 216 || the peak disappeared
 +
|-
 +
|7438 || 08/24/14|| 19:59:05 || 10:00:00 || || open || on || 0.0146 || triple coin., high noise, max. is ch 355
 +
|-
 +
|7444 || 08/25/14|| 21:17:25 || 21:20:35|| || open || on || 230 || gate delay 700 ns, peak disappeared [[File: gate delay700ns.png | 300 px]]
 +
|-
 +
|7446 || 08/25/14|| 21:29:51|| 21:38:55 || || open || off ||  185 || does not count for P_B. peak disappeared
 
|-
 
|-
|  200 g || 1000 g 
 
|}
 
  
U-238 has a atomic number 92, and mass number of  238.050785, it is mainly an alpha emitter.  Th-232 has a atomic number 90, and mass number of 232.038051 , it is also an alpha emitter.
 
 
 
2) Describe the facility used to store the materials, diagram of room layout.  location of safe.
 
 
A floorplan of the Laboratory for Detector Science is shown below.
 
 
[[Media:LDS dimension Model(1).pdf ]]
 
 
The LDS has 2 safes available for storing radioactive materials.  A solid steel safe manufactured by  Bunker Hill with the outer dimensions  of (25 cm)H X (35 cm) W X (25 cm) D and inner dimensions of  9-1/2” H X 13-1/2” W X 9-5/8”  is controlled by a digital lock.  The safe itself weighs 15 kg and is mounted to a wall in the LDS. A second iron safe, manufacturer unkown, uses a combination lock and has the outer dimensions of 62 H X57 W X 45 (cm)D.
 
  
 +
|}
  
  
 +
[[File: shutteropen_sourceon_off.png | 300 px]]
  
3.) Describe radiation survey instruments available for monitoring.
+
= unknown gas mixed bottle measurements=
  
We ask that the TSO provide us with all necessary monitoring devices.
 
  
4.) Description and estimate of radioactive waste being generated.
+
; Updates
  
We do not expect to generate radioactive was.
+
Changing the leading edge disc. to understand the Peak sensing and explain the cut int he peak sensing graph.
  
=6/12/09=
+
Measuring the noise. by starting by low signal rate to distinguish the signal from the noise.
  
1.) heat PC board for 3 hours at 210C
+
; Channels and signals
  
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
210 <math>^o C</math>
+
|device|| ch || input source
 +
|-
 +
| ADC || 5 || GEM's trigout
 +
|-
 +
| Peak sensing 7|| 15 |GEM's trigout
 +
|-
 +
| Peak sensing 5 || 11 ||  PMT Left
 +
|-
 +
| Peak sensing 8|| 17 ||  PMT right
 
|-
 
|-
|| [[Image:PC board at 210 degrees.jpg | 200 px]]
+
|PS translator ||
|}
+
|-
 +
|TDC || 25 || PMT L
  
 
2.) Determine laser resolution for a 45 micron thick copper sheet
 
 
50 micron
 
 
 
3.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
resisters have arrived currently soldering ready to measure HVs (remember, Digital voltmeter has 1 kV max)
 
 
 
4.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
=6/19/09=
 
 
1.) Th-232 mask due July 1,2009
 
 
 
2.) HV distribution chain calculation.  Do a sample calculation for <math>HV_{GEM} = 3200 V</math>  <math> \Delta V_{GEM1} \equiv V_{G1B}-V_{G1T}</math> =?
 
 
[[Image:Abdel_GEM_HV_distrib_6-19-09.png | 200 px]]
 
 
 
 
 
<math> V_{in} - I \times (R_8 +R_3) - I \times \left( \frac{R_{10} \times R_9}{ R_{10} + R_9} +R_{11} \right) -  I \times \left ( \frac{R_{13} \times R_5}{ R_{13} + R_5} +R_7 \right )= 0 </math>
 
 
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
=6/30/09=
 
 
1.) Th-232 mask due July 1,2009
 
 
change design to be a series of lines covering the holes.  Calculate the % area of the foil to be covered with Th-232.
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
Input Voltage = 1000 V
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Current  || measured  || calculated
+
|TDC|| 27 || GEM's trigout
 +
|-
 +
| TDC || 29 || PMT R
 +
|-
 +
| TDC || 31 (Stopper) || triple coincidence (OR Mode)
 +
|-
 +
|CAEN N638
 +
|-
 +
|TDC || 17 || PMT L
 
|-
 
|-
|   (uA)  ||  262.3    || 220.7 
+
|TDC B2||  18|| GEM's trigout multi-hit
|}
 
 
 
 
 
 
 
 
 
From the figure above:
 
 
 
<math> R_{T11} =  R_8  </math>
 
 
 
 
 
<math> R_{T22} = \left( \frac{R_{10} \times R_9}{ R_{10} + R_9} \right )</math>
 
 
 
 
 
<math> R_{T33} = \left( \frac{R_{13} \times R_5}{ R_{13} + R_5} \right )</math>
 
 
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
Contact F.W. Jones, TRIUMF, 03-DEC-96 and ask for suggestion on simulating Th-232 (n,f) in GEANT4.  Which model to get X-sections right?
 
 
 
F.W. Jones sent by July, 7:
 
 
 
G4LFission is based on the GHEISHA model of fission,
 
by H. Fesefeldt, from GEANT 3.21.
 
 
 
It is a parameterized model using empirical formulas,
 
e.g. the one for average number of neutrons.
 
The photofission part of the model is not implemented.
 
 
 
My role in this was mainly as a code translator, so
 
unfortunately I can't give you an expert opinion
 
on it.  I would suggest that for your study, use one of
 
the prepared physics lists which will include the
 
optimal treatments of fission for various applications.
 
 
 
See e.g. http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/referencePL.shtml
 
 
 
If you are in doubt about choosing a physics list, I would strongly
 
recommend that you post a query on the Geant4 forums, describing
 
your application and what you wish to study (indicate if you wish
 
to study nuclear fragments or other yields).
 
 
 
The forum for hadronic physics is here:
 
 
 
http://hypernews.slac.stanford.edu/HyperNews/geant4/get/hadronprocess.html
 
 
 
This forum is monitored by experts who will be able to provide a
 
more definitive answer.
 
 
 
Best regards,
 
Fred Jones
 
 
 
= 7/10/09 =
 
1.) Th-232 mask due July 1,2009
 
 
 
Making the lines as wide as the holes consumes 50% of the surface area.
 
 
 
A 0.45 mm diameter circle covering the holes and connected by 0.3 mm thick lines will increase the area available for fissionable material to 64%.
 
 
 
Decision is to create a series of lines 0.4 mm thick to cover the holes and connect them with support material.
 
 
 
We need a design of lines 0.4 mm thick covering the holes and connecting them.  The distance between line should be 0.3 mm and have a tolerance of  0.1 mm.
 
This will be an effective area of 3/7 = 42% for fission material.
 
 
 
 
 
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
 
Redo with actual measured resistance values
 
 
 
3.)Add  GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program.  Goal is to find a model which reproduces the X-section data for Th-232 above.
 
 
 
 
 
Install model suggested by Forum below for U-232:
 
 
 
 
 
http://hypernews.slac.stanford.edu/HyperNews/geant4/get/hadronprocess.html
 
 
 
add the functions below to the physicslist.  these are the fission models
 
 
 
G4HadronFissionProcess* Fission = new G4HadronFissionProcess();
 
G4ParaFissionModel* FissionModel = new G4ParaFissionModel();
 
thenFission->RegisterMe(FissionModel);
 
pManager->AddDiscreteProcess(Fission);
 
 
 
install this into detector construction
 
 
 
<pre>
 
 
 
// U-235
 
  a = 235.01*g/mole;
 
  density = 19.050*g/cm3;
 
  U235 = new G4Material(name="U235", z= 92., a, density);
 
 
 
</pre>
 
 
 
 
 
 
 
4.) Resistive Coating links
 
 
 
http://www.ellsworth.com/conformal.html?tab=Products
 
 
 
=7/15/09=
 
 
 
Got LLNL fission model with reference below
 
 
 
http://nuclear.llnl.gov/simulation/fission_usermanual.pdf
 
 
 
 
 
Created FissLib model in ExN02 using Uranium target.
 
 
 
 
 
The command below will turn on tracking printout
 
 
 
/tracking/verbose 1
 
 
 
The command below will send another neutron projectil in
 
/run/beamOn 1
 
 
 
=7/24/09=
 
 
 
1.) Th-232 mask due July 1,2009
 
 
 
[[File:Th-232_Mask_7-24-09.pdf]]
 
 
 
Add alignment holes.
 
 
 
[[File:copper_foil_04_straight_lines_with_adjustment.pdf]]
 
 
 
 
 
2.) Insert  HV distribution chain measurements in table form and compare to calculation. 
 
 
 
Redo with actual measured resistance values
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Voltage (V) || measured || calculated
+
|TDC B6||  22|| GEM's B_p
 
|-
 
|-
| <math> R_{T11} </math>|| 165  || 126.6
+
| TDC || 21 || PMT R
 
|-
 
|-
|<math> R_{T22} </math> || 98.6  || 103.4
+
| TDC 6 || 30 (pulser) || triple coincidence (OR Mode)
 
|-
 
|-
| <math> R_{T33} </math>||  81.5    || 95.9
+
|TDC 7 ||  23|| delayed GEM's trigout
 
|}
 
|}
  
  
3.)Add GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program. Goal is to find a model which reproduces the X-section data for Th-232 above.
+
{| border="1" cellpadding="4"
 +
|-
 +
|Run Number||Date || start || end || Time (min) || Shutter || Source || Count rate (counts/min) || Notes
 +
|-
 +
| 7273|| 08/06/14 || 07:10:38 || 11:41:00 || 12502 || open || off || 67 || 0.1 flow rate
  
 +
|-
 +
| 7274|| 08/06/14 || 11:49:35 || 18:15:01 ||  23126 || closed || off || 39 || 0.1 flow rate
  
 
trying to simulate the experiment by geant4, once when the source is thorium and another when the source is uranium by hitting the target every time with 10^7 neutrons of energy of 7.5 MeV.
 
 
The result :
 
 
Until now I did not see any effect of fission processes, the thickness of the target is 0.01 cm. then I should make the target thinner.
 
 
I read the paper uploaded to the wiki, the editor explained that G4NDL3.10 has limaitions, under geant4 it just has data for U 7 isotopes.
 
 
Mostly all what I got in my simulation is gamma, pair production and Compton scattering. 
 
 
I did  search to see who is interested in tracking fission fragment:
 
I found the following contact with "Michael Heffner" in Lawrence Livermore National Lab. who was engaged in tracking hte fission fragment for Cf-239 but unfortunately I did not get a reply for my email:
 
 
I am working on tracking the fission fragment of thorium-232 and uranium-238, part of my work is to use Geant4 for experiment simulations, I read about your work in tracking the fission fragment of Pu-239 (n,f).
 
which model did you use for fission fragment tracking?
 
 
the link for their work is :
 
 
http://74.125.155.132/searchq=cache:SrXOI60kSs0J:www.nscl.msu.edu/~bickley/TPCWorkshop/Presentations/03_Heffner.pdf+tracking+fission+fragment+"Michael+Heffner"&cd=1&hl=en&ct=clnk&gl=us
 
 
Use Uranium target
 
  use
 
http://wiki.iac.isu.edu/index.php/Simulations_of_Particle_Interactions_with_Matter#Changing_the_Random_number_seed_in_GEANT4
 
to save random number generator state for a fission event.
 
decrease target thickness until you see fission fragments
 
 
ExampleN02Detector construction.cc is edited, experiment simulated with 6.5 MeV neutron beam but different target thicknesses, the result is summarized as the following :
 
 
= 7/27/09=
 
 
Zoom into interaction point to see all the particles (gamma and neutron). 
 
You will need to do this to see fission fragments anyway.
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Beam Energy (MeV) || Target thickness (um)  || the first fission event random number || image
+
| 7275|| 08/06/14 || 20:37:07 || 09:10:10||   || closed || off || 40 || 0.2 flow rate
 
|-
 
|-
|   6.5              ||     100    ||     7458    ||  [[Image: n_detector_6.5MeV_1mm.jpeg | 100 px]]
+
| 7276|| 08/06/14 || 09:15:00 ||  09:32:00||  || open || off || 80 || 0.2 flow rate amplification increases from 50 to 100
 
|-
 
|-
|   6.5              ||   10      ||     17475    ||
+
| 7277|| 08/06/14 ||  09:33:08 || 11:40:42||  7654 || open || off || 81 || 0.2
 
|-
 
|-
|   6.5              ||   2      ||     285078    || [[Image: n_detector_6.5MeV_2um.jpeg | 100 px]] 
+
| 7295|| 08/08/14 || 17:36:58 || 19:55:59|| 4741  || closed || off ||  60 || 0.2
|-
 
|   6.5              ||   1      ||   2,691,504 || [[Image: n_detector_6.5MeV_1um.jpeg | 100 px]]
 
|}
 
  
We can track the ions coming out of the fission process by defining the adding G4DiffuseElastic.cc to our physics list.
+
|-
 +
| 7296|| 08/08/14 ||  22:28:01 || 23:43:14||  || closed || off ||  58 || 0.3
 +
|-
 +
| 7297|| 08/08/14 ||  23:48:14|| 12:08:00  || 37186|| open || off ||  93 || 0.3
 +
|-
 +
| 7298|| 08/09/14 ||  00:16:14||  06:08:03 ||21109 ||closed || off ||  56 || 0.3
  
http://docs.google.com/gview?a=v&q=cache:hsRwLvrsdZMJ:www.oro.doe.gov/riaseb/wrkshop2003/papers/p-2-0-6.pdf+geant4+and+"+tracking+ions"+code&hl=en&gl=us&pli=1
+
|-
 +
| 7299|| 08/10/14 ||  19:27:12||  20:09:04 || 2152||closed || on ||  107 || 0.1  
  
=8/3/09=
+
|-
 +
| 7300|| 08/10/14 ||  20:11:30||  20:46:29 ||2099 ||open || on ||  136 || 0.1
  
1.) Th-232 mask due July 1,2009
+
|-
 +
| 7302|| 08/11/14 ||  06:53:14||  07:22:45 || 1771||closed || on ||  114 || 0.2
  
[[File:Th-232_Mask_7-24-09.pdf]]
+
|-
 +
| 7303|| 08/11/14 ||  07:26:58||  07:48:01 || 1263||open || on ||  167 || 0.2
  
Add alignment holes.
+
|-
 +
| 7305|| 08/11/14 ||  13:21:16||  13:55:05 || 2029||open || on ||  178 || 0.3
  
[[File:copper_foil_04_straight_lines_with_adjustment.pdf]]
+
|-
 
+
| 7306|| 08/11/14 ||  14:41:00||  15:40:00 || 3540||closed || on || 110 || 0.3
 
 
Need to calculate gravitation deflection of stainless steel strip that is 0.4 mm and 11 cm long wide as a function of its thickness.
 
 
 
Plot mask thickness -vs- deflection due to gravity.
 
 
 
 
 
2.) Insert HV distribution chain measurements in table form and compare to calculation.  
 
  
What is uncertainty in the current used to calculate the expected voltage drop.
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|Voltage (V) || measured || calculated
+
| 7307|| 08/14/14 ||  08:14:15||  08:20:39 || 384||closed || off ||  || 0.1 noise measurements (pulser only)
 
|-
 
|-
| <math> R_{T11} </math>|| 165  ||  126.6
+
| 7308|| 08/14/14 ||  08:22:43||  08:29:23 || ||open || off ||  1314 || 0.1 noise measurements (pulser only) same noise level as shutter closed (ch. 86) for Peak sensing ADC
 
|-
 
|-
|<math> R_{T22} </math> ||  98.6  ||  103.4
+
| 7309|| 08/14/14 || 08:35:09 || 09:45:37 || 4229 || open || off ||  || 0.1 flow rate was not exact, little less.
 
|-
 
|-
| <math> R_{T33} </math>||  81.5    || 95.9
+
| 7310|| 08/14/14 || 09:46:12 || 11:18:39 ||  5547 || open || off || 54 || 0.1 flow rate was not exact, little less.
|}
 
  
 +
|-
 +
| 7311|| 08/14/14 || 11:19:45 || 13:01:57 ||  6132 || open || off || 52 || 0.1 flow rate was not exact, little less.
  
3.)Add GEANT4 Fission model (CHIPS or GEISHA) to ExampleN02 program. Goal is to find a model which reproduces the X-section data for Th-232 above.
+
|-
 +
| 7312|| 08/14/14 ||  13:10:50 || 14:28:07|| 4637 || open || off || 72 || 0.1 flow rate was not exact, little less.
  
 
;Goal
 
:Simulate the fission process using an incident neutron of energy 6.5 MeV and a layer of U-238 using Geant4.
 
 
 
;Status
 
: We are now seeing fission events for 1 micron thick sheets of U-238.
 
:We do not see fission fragments yet
 
 
 
Suggestions:
 
 
1.) Move target to center of world and zoom in
 
 
2.) Add particle definition of ions
 
 
3.) add G4DiffuseElastic.cc process for charged pariticles > 0
 
 
=8/10/09=
 
 
1.)Need to calculate gravitation deflection of stainless steel strip that is 0.4 mm and 14 cm long wide as a function of its thickness.
 
 
Plot mask thickness -vs- deflection due to gravity.
 
 
Maximum deflection  of plate  of a uniform load, is given by the following formula:[http://www.amazon.com/Structural-Analysis-7th-Russell-Hibbeler/dp/0136020607]
 
 
<math> \Delta =  \frac{ 5 w L^4}{384 E I} </math>    ;        <math> I =  \frac{b h^3}{12} </math>
 
 
where:
 
 
<math>\Delta</math> : Deflection (m)
 
 
w : The weight of the plate per unit length (N/m)
 
 
b : The shorter side of the plate (m) (b = 0.4 mm)
 
 
E : Young Modulus (N/m^2) (for stainless steel = 200 GN/m^2)
 
 
h : The thickness of the plate (m)
 
 
L : The length of the plate (m) (d = 0.14 m)
 
 
I : The moment of inertia (m^4)
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| t (m)        ||  y_{max} (m)
+
| 7313|| 08/14/14 ||  14:30:24|| 15:38: 48||  4056  || open || off || 80 || 0.1 flow rate as is used to be
 +
|-
 +
| 7314|| 08/14/14 ||  15:41: 52||  16:46:55  || 3897|| open || on || 147 || 0.1 flow rate as is used to be
 +
|-
 +
| 7315|| 08/14/14 ||  16:49: 59||  19:14:30  ||8729|| open || on || 148 || 0.1 flow rate as is used to be
 
|-
 
|-
|1.00 10^-7 || 0.00003150
+
| 7316|| 08/14/14 ||  19:18:43 || 22:14:07  ||10596 || open || on ||147  || 0.1 flow rate as is used to be
|-
 
|2.00 *10^-7 || 0.00000394
 
 
|-
 
|-
|3.00 *10^-7 || 0.00000117
+
| 7317|| 08/14/14 ||  22:18:24 || 10:18:52  || 43220|| open || on ||  0.0095|| 0.1 flow rate, triple coincidence
 
|-
 
|-
|4.00 *10^-7 || 0.00000049
 
 
|-
 
|-
|5.00 *10^-7 || 0.00000025
+
| 7318|| 08/15/14 ||  10:24:00 || 12:42:23  || 8303|| open || on || 147  || 0.1 flow rate
 
|-
 
|-
|1.00 *10^-6 || 0.000000032
+
| 7319|| 08/15/14 ||  12:46:14 || 15:46:09 || 10795|| open || on || 148  || 0.1 flow rate
 
|-
 
|-
|2.00 *10^-6 || 0.000000004
+
| 7323|| 08/15-16/14 ||  16:59:39 || 06:03:11 || 46970|| open || off || 0.0011  || 0.1 flow rate, triple coincidence
 
|-
 
|-
|}
+
| 7329|| 08/16/14 ||  07:06:32 || 10:35:35 || 12543|| open || off || 83  || 0.1 flow rate, PMT's charge is measured for L and R
 
 
   
 
 
 
 
 
2.) What is uncertainty in the current used to calculate the expected voltage drop.
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|                       || measured (Mohm)|| theoretical value (Mohm)|| Voltage (V)measured || Voltage (V) calculated
+
| 7330|| 08/16/14 ||   10:41:58 || 12:48:33 || 7595 || open || on ||  146 || 0.1 flow rate
 
|-
 
|-
| <math> R_{T11} </math> ||     0.56      <math>\pm</math> 0.01    ||   0.55                  || 165 <math>\pm</math> 1 ||  126.6
+
| 7331|| 08/16-17/14 ||    12:52:07 || 06:45:03 || 64384 || open || off || 0.0016 || 0.1 flow rate, triple coincidence, coda counted 111 but the data file is empty!
 
|-
 
|-
|<math> R_{T22} </math>  ||     0.47            ||       0.46            || 98.6   || 103.4
+
| 7332|| 08/17/14 ||  06:52:26 || 07:04:45|| 739 || open || on || 1367   || 0.1 flow rate noise measurements with the wave generator
 
|-
 
|-
| <math> R_{T33} </math> ||     0.42            ||           0.41      ||  81.5    ||  95.9
+
| 7333|| 08/17/14 ||   07:05:50 || 08:53:54 ||  || open || on || 155 || 0.1 flow rate
 
|-
 
|-
| <math> R_{T33} </math> ||       0.56            ||       0.55                || 244            ||   220
+
 
 +
| 7334|| 08/17/14 ||  08:57:02 || 13:13:38 || || open || off || 82 || 0.1 flow rate
 
|-
 
|-
| <math> R_{T33} </math> ||       0.47        ||       0.46                ||       200      ||   220
+
| 7337|| 08/17/14 ||  14:17:24 ||  14:30:29|| || open || on || 1400 || 0.1 flow rate, GEM 2.92 kV , CATH 3.47kV(+50V),  noise measurements with the wave generator
 
|-
 
|-
| <math> R_{T33} </math> ||         0.42    ||           0.41            ||       212      ||   220
+
|7338|| 08/17/14 || 14:31:37|| 16:17:45||  || open || on || 163  || 0.1 flow rate
 
|-
 
|-
|}
 
  
the uncertainty in measuring the voltage is +_ 10, and for measuring the resistance is +_ 0.05
+
|7339|| 08/17/14 ||  16:20:25|| 16:35:45 || || open || off || 1368  || 0.1 flow rate, noise measurements with the wave generator
So the uncertainty in current theoritically is
+
|-
 
 
3.)
 
 
 
;Goal
 
:Simulate the fission process using an incident neutron of energy 6.5 MeV and a layer of U-238 using Geant4.
 
 
 
 
 
;Status
 
: We are now seeing fission events for 1 micron thick sheets of U-2const
 
 
 
:We do not see fission fragments yet
 
 
 
 
 
;Suggestions:
 
  
1.) Move target to center of world and zoom in
+
|7340|| 08/17/14 ||  16:37:01 || 20:33:04||  || open || off || 95 || 0.1 flow rate
 
 
2.) Add particle definition of ions
 
 
 
3.) add G4DiffuseElastic.cc process for charged pariticles > 0
 
 
 
Uranium238 = new G4Isotope(name="U238", iz=92, n=238, a=238.03*g/mole);
 
 
 
 
 
<pre>
 
G4IonTable *theIonTable =
 
G4ParticleTable::GetParticleTable()->GetIonTable();
 
G4RadioactiveDecay* theRadioactiveDecay =
 
new G4RadioactiveDecay();
 
for (G4int i=0; i<theIonTable->Entries(); i++)
 
{
 
G4String particleName =
 
theIonTable->GetParticle(i)->GetParticleName();
 
if (particleName == "GenericIon") {
 
G4ProcessManager* pmanager =
 
theIonTable->GetParticle(i)->GetProcessManager();
 
pmanager->AddProcess(theRadioactiveDecay);
 
}
 
 
 
 
 
// ions
 
  G4Deuteron::Deuteron();
 
  G4Triton::Triton();
 
  G4He3::He3();
 
  G4Alpha::Alpha();
 
  G4GenericIon::GenericIonDefinition();
 
 
 
} else if (particleName == "alpha" ||
 
              particleName == "He3" ||
 
              particleName == "GenericIon") {
 
 
 
      pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
 
      G4ionIonisation* ionIoni = new G4ionIonisation();
 
      ionIoni->SetStepFunction(0.1, 20*um);
 
      pmanager->AddProcess(ionIoni,                  -1, 2, 2);
 
 
 
   
 
 
 
</pre>
 
 
 
=8/17/09=
 
1.)Convert table to a graph of "Thickness (mils)" on x-axis and "Deflection (<math>\mu</math> m)" on y-axis.  With horizontal line at 20 microns.  Any thickness with deflection less than 20 microns may be used.
 
 
 
change units to micron and make y-axis logarithmic
 
 
 
[[Image: Deflection_thickness_ss.jpeg | 200 px]]
 
 
 
 
 
 
 
;Thermal Expansion Coefficient:
 
 
 
In addition to the probability of the mask deflection by its weight, thermal expansion is another effect that may decrease the efficiency  of the mask in covering the holes. The thermal expansion coefficient for stainless steel is  studied and equals to (um/<math>^o C</math>): (according to [http://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html])
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|   Stainless steel type          || um/<math>^o C</math>  ||(10-6 in/inF)
+
|7341|| 08/17-18/14 ||  20:40:16|| 06:18:43 || || open || off || 0.0015  || 0.1 flow rate, triple coincidence
 
|-
 
|-
|Steel Stainless Austenitic (304) || 17.3 || 9.6
+
|7342|| 08/18/14 || 06:25:44 || 06:37:43 || || open || on || 1403  || 0.1 flow rate, noise measurements
 
|-
 
|-
| Steel Stainless Austenitic (310)  || 14.4 ||  8.0
+
|7345|| 08/18/14 ||  06:39:23 || 14:17:58 || || open || on ||0.0128  || 0.1 flow rate, triple coincidence
 
|-
 
|-
|Steel Stainless Austenitic (316)    || 16.0 || 8.9
+
|7355|| 08/18/14 || 16:03:29 ||  19:59:51|| || open || off || 75 || 0.1 flow rate, EM 2.82 kV , CATH 3.37kV(-50V), CAEN translator is used
 
|-
 
|-
|Steel Stainless Ferritic  (410)    || 9.9 ||5.5
+
|7356|| 08/18/14 ||  20:03:05|| 20:07:58 || || open || on || 2k || 0.1 flow rate, noise measurement
 
|-
 
|-
| Copper                            ||     16.6      || 9.3
+
|7357|| 08/18/14 ||  20:08:43 || 22:48:22 |||| open || on || 142 || 0.1 flow rate
|}
 
 
 
In our case, the plate expansion toward the width is negligible at 260 <math>^o C</math> (assuming the room temperature 20 <math>^o C</math>), but heating stainless steel (304) plate to the same temperature  will cause  (0.58mm) change in length! we should be careful as we are welding the ends, or it is better if there is a way to clip the edges to avoid the deflection by length expansion.
 
 
 
;Areal thermal expansion
 
 
 
At room temperature, a 0.4 mm length square of stainless steel is going to cover a hole in  a copper plate of diameter 0.4 mm. But, as soon as both plates expose to  (300 <math>^o C</math>) furnace, the area will increase by the following formula:
 
 
 
<math> \frac{ \delta A}{A} = 2 \alpha (\delta T) </math>   
 
   
 
So the change in area for SS-plate is 7.6 *10^-4 mm^2, but for the copper is 2.3 * 10^-3 mm^2, a wider mask line should be used.i.e 0.4mm SS-plate width will not cover completely the hole at 300 <math>^o C</math>.
 
 
 
 
 
 
 
2.) What is uncertainty in the current used to calculate the expected voltage drop.
 
 
 
the uncertainty in voltage can be given by the following formula:
 
 
 
 
 
Insert expression for <math>I_{11}</math> and calculate it using the measured resistances below also propagate error of measured resistances
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|                       || measured (Mohm)||  Voltage (V)measured || I  measured (mA)
+
|7358|| 08/18-19/14 ||  22:53:13 || 10:52:44|| || open || on || 0.0082 || 0.1 flow rate , triple coincidence
 
|-
 
|-
| <math> R_{T11} </math> ||     0.56      <math>\pm</math> 0.01    ||   165.0 <math>\pm</math> 0.1 || 375 <math>\pm</math> 6.7
+
|7359|| 08/19/14 ||  10:55:49|| 10:59:52 || || open || on || 2.1k || 0.1 flow rate , noise measurement
 
|-
 
|-
|<math> R_{T22} </math> ||     0.47  <math>\pm</math> 0.01        ||     98.6 <math>\pm</math> 0.1         || 253 <math>\pm</math> 6.7
+
 
 +
|7360|| 08/19/14 || 11:00:38|| 14:26:38|| || open || on ||  156|| 0.1 flow rate  noise measurement with 1 Hz sampling
 
|-
 
|-
| <math> R_{T33} </math> ||     0.42  <math>\pm</math> 0.01          ||           81.5 <math>\pm</math> 0.1       || 259 <math>\pm</math> 6.7
+
|7361|| 08/19/14 ||  14:40:49||18:25:00 || open || on || 0 || 0.1 flow rate  with  1 Hz sampling (AND gate)
 
|-
 
|-
|}
+
|7362|| 08/19/14 ||  18:33:15||  18:38:54|| ||open || on ||1.5k  || 0.1 flow rate triple coinc.(OR)
 
 
Why aren't the currents the same?
 
Measure the voltage and resistance at each junction , compute current and compare
 
 
 
=8/19/2009=
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
|                       || measured (Mohm) ( <math>\pm</math> 0.01)|| Voltage (V)measured ( <math>\pm</math>  0.1) || I (uA)
+
|7363|| 08/19-20/14 ||  18:39:46|| 13:39:45|| ||open || on ||0.0081  || 0.1 flow rate triple coinc.(OR)
 
|-
 
|-
| <math> R_{8} </math> ||     0.56         ||   165.0||  294 <math>\pm</math>  5
+
|7364|| 08/20/14 || 13:44:56|| 13:50:57 ||  ||open || off || 1.55k || 0.1 flow rate noise measurements, 2.87, 3.42kV for GEM and CATH
 
|-
 
|-
|<math> R_{3} </math> ||     1.01    ||       244.0 ||  241 <math>\pm</math>  2  
+
|7367|| 08/20/14 || 15:08:27 || 16:49:37 ||  ||open || off || 86 || 0.1 flow rate, 2.87, 3.42kV for GEM and CATH
 
|-
 
|-
| <math> R_{9} </math> ||     0.51              ||  99.0    || 194 <math>\pm</math> 4
+
|7368|| 08/20/14 || 16:53:42||  17:15:49||  ||open || on || 154 || 0.1 flow rate
 
|-
 
|-
| <math> R_{10} </math> ||     5.51        || 99.0            ||   16 <math>\pm</math> 0.03
+
|7369|| 08/20/14 ||  17:17:39|| 20:28:43|| ||open || off || 86  || 0.1 flow rate, spec. amplifier decreased from 100 to 50
 
|-
 
|-
| <math> R_{11} </math> ||     1.02          ||       198.6      ||   195 <math>\pm</math> 2
+
|7479|| 08/27/14 || 10:02:21|| 10:42:09||  ||open || on || 64  || 0.1 flow rate,
 
|-
 
|-
| <math> R_{13} </math> ||     0.51          ||       81.4      ||   159 <math>\pm</math> 0.2
+
|7480|| 08/27/14 ||  10:46:18|| 14:17:22 || ||open || off || 11 || 0.1 flow rate,
 
|-
 
|-
| <math> R_{5} </math> ||     2.32          ||       81.4    ||   33 <math>\pm</math> 0.15
+
|7481|| 08/27/14 || 14:19:33 || 14:43:39 || ||close || on || 78  || 0.1 flow rate,
 
|-
 
|-
| <math> R_{7} </math> ||       1.04          ||       211.9 ||   203 <math>\pm</math> 2
+
|7488|| 08/27/14 || 16:16:37 || 16:48:53  || || open|| on || 86  || 0.1 flow rate,
 
|-
 
|-
 +
|7491|| 08/27/14 ||  18:09:27 || 18:59:05  || || open|| on || 86  || 0.1 flow rate,
 
|}
 
|}
 
 
=8/28/2009=
 
1.)Final version of deflection plot
 
 
change units to micron and make y-axis logarithmic
 
 
2.) Construct table of  measured <math>\Delta</math> V for each GEM foil preamp and the predicted <math>\Delta</math> V when <math>V_{GEM}</math> is 1000, 500, and 200 volts (also try 2 and 4 kV).  Use the current measure by CAEN power supply as input to calculation.  Measure the voltage difference using a voltmeter.
 
 
Perhaps our previous inconsistencies were due to bad current measurements?
 
  
3.) Dr. Forest installed GEANT 4.9.2 on Inca.  But still no ion tracking.
 
  
=9/8/2009=
+
==Peak sensing measurements by 08/28/14==
  
1.)Final version of deflection plot
+
Peak sensning measurements for GEM were recorded in the time between 8:00 am to 9:44am for shutter open as the following
  
Insert caption and increase font size of labels.  Try bold lines.  Make 20 micron horizontal line dashed.  Make theory curve line black and thicker.
 
 
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
 
 
 
Insert paragraph describing the results in the curve
 
 
 
2.) Construct table of  measured <math>\Delta</math> V for each GEM foil preamp and the predicted <math>\Delta</math> V when <math>V_{GEM}</math> is 1000, 500, and 200 volts (also try 2 and 4 kV).  Use the current measure by CAEN power supply as input to calculation.  Measure the voltage difference using a voltmeter.
 
 
Perhaps our previous inconsistencies were due to bad current measurements?
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|     Measured                || 200V|| <math> V_{expected} </math> || 500V|| <math> V_{expected} </math> ||1000V  || <math> V_{expected} </math> || 2000V  || <math> V_{expected} </math> || 4000V || <math> V_{expected} </math>
+
| Source On|| Source Off
 +
|-
 +
|7507 || 7506
 
|-
 
|-
| <math> V_{T11} </math> (V) <math>\pm</math> 0.1  || 24.3 || 24 <math>\pm</math>3|| 59.8|| 61 <math>\pm</math>6 ||118.6 || 123 <math>\pm</math>12|| 238.0 ||251.4 <math>\pm</math>23 || 481.0||  530.9 <math>\pm</math>48 
+
|7509 || 7508
 
|-
 
|-
|<math> V_{T22} </math>  (V) <math>\pm</math> 0.1  || 20.3  ||20 <math>\pm</math>3 || 50.2|| 51 <math>\pm</math>6  || 99.9|| 103 <math>\pm</math>11 || 201.9 || 211 <math>\pm</math>23 || 421.0||445 <math>\pm</math>48
+
 
 +
|7511 || 7510
 
|-
 
|-
| <math> V_{T33} </math> (V) <math>\pm</math> 0.1  ||   18.4 || 18  <math>\pm</math>3  || 45.3 || 46 <math>\pm</math>6 || 90.0|| 92.8 || 182.0 || 188 <math>\pm</math>22 || 381.0 || 398.2 <math>\pm</math>48
+
|7513 || 7512
 
|-
 
|-
|  <math> I_{tot} </math> (uA) <math>\pm</math> 1  ||  43  ||  44  || 110 ||  111 || 221 ||  211 || 449|| 443  || 948 ||885 <math>\pm</math>60*
 
|}
 
  
*considering resistance error accumulates for 6 resistances connected in series (each one has 5%).
+
|7515 || 7514
The measurements show that we have better accuracy in measuring the current and the voltage within the expected range of error.
+
|-
 +
|7517 || 7516
 +
|-
  
Now do a table of Vin , and <math>\Delta</math> V Gem 1 ,2,3
+
|7519 || 7518
 
+
|-
3.) Dr. Forest installed GEANT 4.9.2 on Inca.  But still no ion tracking.
+
|7521 || 7520
 +
|}
  
Koi, Tatsumi
 
Phone: (650) 926-4816
 
E-Mail: tkoi@SLAC.Stanford.EDU
 
  
suggests adding the physics list below
+
[[File:unknownbootle_measurements_06_13.png | 300px]][[File:unknownbootle_measurements_14_21.png | 300px ]]
  
  
source/physics_lists/lists/src/HadronPhysicsQGSP_BIC.cc
+
Different output for each run when Peak sensing is used to measure the charge, what is noticed that the charge is different from one  run to another, but all the runs show that the amount of charge collected is bigger when the shutter is open with the source on it except for run 7511. By comparing all the runs, As the shutter is open, the maximum charge is collected by channel number 800, as the source is on the detector, the collected charge reached up to channel 1000 at most.
  
=9/10/09 Ion Tracking=
+
Measuring the data started by 8 am, the noise rate increased so it increased the event rate from 30s to 80s event/s, and it did not decrease until now (Thur. 15:36 08/28/14). all module wiring were checked but without any result. I am using the 90/10 Ar/CO2 bottle as hope to take some measurements but when the noise level goes down maybe this evening to repeat the same measuremnts.
  
You can track CF-232 if you add the line
+
The following reference shows a change in collected charge as the tenperature changes <ref>"Discrimination of nuclear recoils from alpha particles with superheated liquids" F Aubin et al 2008 New J. Phys. 10 103017 </ref>
  
G4GenericIon::GenericIonDefinition();
+
[[File:temp_signal_effect.jpg | 300px]]
  
to the PhysicsList baryon contructor function as shown below
+
=Flow rate and figures=
  
<pre>
+
;03 flow rate
void ExN02PhysicsList::ConstructBaryons()
 
{
 
  //  barions                                                                   
 
  G4Proton::ProtonDefinition();
 
  G4AntiProton::AntiProtonDefinition();
 
  G4GenericIon::GenericIonDefinition();
 
  G4Neutron::NeutronDefinition();
 
  G4AntiNeutron::AntiNeutronDefinition();
 
}
 
</pre>
 
  
=9/15/09=
+
[[File: 03_sourceOn.png | 450 px]]
 +
[[File: 03_sourceoff.png | 450 px]]
 +
[[File: 03_openOn_off_sub.png | 450 px]]
 +
;02 flow rate
  
1.)Final version of deflection plot
+
[[File: 02_sourceOn.png | 150 px]]
 +
[[File:02_sourceoff.png | 150 px]]
 +
[[File: 02_openOn_off_sub.png | 150 px]]
  
Insert caption and increase font size of labels.  Try bold lines.  Make 20 micron horizontal line dashed.  Make theory curve line black and thicker.
+
01 flow rate
  
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
+
[[File: 01_sourceOn.png | 150 px]]
 +
[[File:01_sourceoff.png | 150 px]]
  
Insert paragraph describing the results in the curve.
+
= Common Start Common Stop exchange=
  
The curve represents the relationship between the thickness and the deflection for a plate of stainless steel of width 0.4 mm and length 140mm when the weight is the only force that acts on it. Please look at [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#8.2F10.2F09] for more details about the factors that affects the value of the deflection.
+
Edit the file
The dashed line in the graph intersects with the with deflection line to determine the needed thickness for the plate to have a deflection of 20 um.
 
  
Now do a table of Vin , an, and <math>\Delta</math> V Gem 1 ,2,3
+
cd /usr/local/coda/2.5/readoutlist/v1495trigPAT/
  
{| border="1" cellpadding="4"
+
as the following:
|-
 
|      Measured                || 200V||  500V || 1000V  ||2000V  || 4000V  || ?
 
|-
 
| <math> \Delta V_{T11} </math> (V) <math>\pm</math> 0.1  || 11.9 || 29.8 || 59.1  ||119.2 || 241.7 || 3000
 
|-
 
|<math> \Delta V_{T22} </math>  (V) <math>\pm</math> 0.1  ||10.2 || 25.2  || 50.8  ||103.2 || 215.5 || 2800
 
|-
 
| <math> \Delta V_{T33} </math> (V) <math>\pm</math> 0.1  ||9.21 || 23.1 || 46.1 || 93.2 || 195.5 || 2500
 
|}
 
 
 
<math> \Delta V_{T33} </math>  is the potential difference between the protection resistance (10 Mohm) and the resistance which is mainly responsible for providing the voltage for the THGEM foil. Please look at the figure [http://wiki.iac.isu.edu/images/0/05/Abdel_GEM_HV_distrib_6-19-09.png]. For instance, <math> \Delta V_{T33} </math>  is the voltage  between LP3 and LP4.
 
 
 
=9/22/09=
 
1.) deflections
 
 
 
According to the figure I contacted a prof. in civilian engineering, He recommended another formula looks simpler and appropriate for a beam fixed from both sides. I am working on the figure and the information that we may extract from formula.
 
 
 
Enter formula with reference
 
 
 
I also talked to him about anything  we should consider  affects the mask job when it is heated to 300 degrees Celsius, He suggested to buy a Stainless steel wire (beam) that has the same dimension to the one that will cover a row of holes, then heat it and check what is going to happen to the beam. In other words, build a one beam mask and study what will happen to it (we are considering only weight deflection!)
 
 
 
 
 
2.) TGEM HV
 
{| border="1" cellpadding="4"
 
|-
 
| Applied Potential (V)  ||<math>  V_{T11} </math> (V) || <math> \Delta V_{T22} </math> (V) ||<math>  V_{T22} </math> (V) ||<math> \Delta V_{T22} </math> (V)|| <math> V_{T33} </math> (V)|| <math> \Delta V_{T33} </math> (V)
 
|-
 
|    200    || 24.3  || 11.9  || 20.3  ||10.2 ||18.4  ||  9.2
 
|-
 
|    500      || 59.8 || 29.8  || 50.2  || 25.2 || 45.3 || 23.1
 
|-
 
|  1000      || 118.6 ||59.1  || 103.0  || 50.8 ||90.0 ||46.1
 
|-
 
| 2000        || 238.0 ||119.2 || 211.0  ||103.2  ||182.0 || 93.2
 
|-
 
| 4000        || 481.0  || 241.7 ||421.0 ||215.5  ||381.0 || 195.5
 
|}
 
 
   
 
   
According to the measurements taken, we conclude :
+
for common start comment:
 +
/* c775CommonStop(TDC_ID);
  
    <math> \ V_{T} </math> = (approximately) 2 <math> \Delta V_{T} </math>
+
for common stop uncomment:
So if <math> \Delta V_{T} </math> is needed to be as the the table below then the value for <math> \ V_{T} </math> can be determined depending on the previous conclusion:
+
  c775CommonStop(TDC_ID);
  
 +
=Ionization xsections for different particles emitted from U-233=
  
{| border="1" cellpadding="4"
+
; Photons
|-
 
| THGEM foil resistance (Mohm) ||<math> \Delta V_{T} </math>(V) || <math>  V_{T} </math> (V) || I (mA) || P (W)
 
|-
 
| <math>  R_{11} </math> = 0.56||  3000          || 6000      ||    11    ||  64 
 
|-
 
| <math>  R_{22} </math> = 0.46 ||  2800          ||  5600      ||    12    ||  66
 
|-
 
|  <math>  R_{33} </math> = 0.42|| 2500          ||  5000        ||    12    ||  61
 
|}
 
From the table, the power supply potential should be 16,600 V.
 
  
 +
[[File: photoabosorption_Ar.png | 150 px]]
 +
[[File: photoabosorption_CO2.png | 150 px]]
 +
[[File: photoabosorption_Ar_CO2.png | 150 px]]
  
Study the 12 Volt power system in the links below and determine how to copy
+
Ref. : http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
  
  
3.) Resistive paste
+
;Electrons
I called the paste company [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#7.2F31.2F2009], there were in process to make the paste in their labs (because of that it took them that long), looks they succeeded, but until now there is not any information about the shipping which will probably be available on Friday. So I will call (bug) them again on that day.
 
  
The paste was shipped on Friday, we are expecting to have it by Wednesday Sept. 30, the company should call me again for tracking number! but I will call them tomorrow.
+
[[File: electron_ion_Ar.png | 150 px]]
  
 +
Ref. :
  
=9/29/09=
+
Data Nucl. Data Tables 54 (1993) 75  [[File: electron_ionization_Ar.pdf]]
  
;Paste
 
The paste was shipped on Friday, we are expecting to have it by Wednesday Sept. 30, the company should call me again for tracking number! but I looks I should call again!
 
  
 +
;Alpha Particles
  
 +
[[File: alpha_ionization.png | 150 px]]
  
;Deflection vs Thickness:
+
Ref. :
Depending on the equation [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#8.2F10.2F09] :
 
  
[[Image: Deflection_vs_thickness_20umline.jpeg | 200 px]]
+
http://www.exphys.jku.at/Kshells/
  
 +
Data Nucl. Data Tables 54 (1993) 75
  
==HV ==
+
=Coincidence Measurements for GEM and the Plastic scintillator=  
  
[http://arxiv.org/abs/0905.2916 M. Cortesi] used a CAEN N471A to individually supply each THGEM stage.  The HV supply was set to trip at 50 nA and a 15-20 M Ohm resister was attached in series with the Power supply to limit discharge currents.
+
;Coincidence Measurement for the scintillator PMT's without shielding and without source
  
Circuit:
+
{| border="1" cellpadding="4"
 +
|-
 +
|Date || Time || No. of Counts (counts)||  Count rate (counts/min)
 +
|-
 +
|07/09/14 || 1066 || 659005 || 618
 +
|-
 +
|07/10/14 || 538 || 368974 || 686
 +
|-
  
The paper gives an idea to how to use the active divider to avoid using more that high voltage power supply, the active divider circuit.
 
  
There is a little problem in using that circuit: the maximum voltage provided to the THGEM foil is maximum 1800 V, and that will create a current 22 mA.
 
  
Most of the experiments, they starts to run separate HV-power supply connected to a series of high resistances (15- 20 Mohm).
+
|}
  
=10/6/09=
 
  
1.) Resistive Paste:
 
  
Describe past mixture procedure and curing.
+
;Triple coincidence Measurement for the scintillator PMT's shielded and without source
  
technical data sheet[[File:ED7100_Series_paste.pdf]]
+
Triple coincidence among the 2 PMT's and the GEM detector is measured using coincidence module caberra 2144 and ortec 778 counter, count rate is 0.3+_ 0.03 Hz. However, the rate was zero before shielding.
  
safety data sheet  [[File:ED7100_OSHA_MSDS.pdf]]
+
The following pics show The GEM output with triple coincidence signal, it is observed that different GEM peaks coincide with the triple signal, which shows that adding the shielding contaminates the neutron signal.
  
2.) Change units on deflection plot and insert new plot
 
  
3.) Insert link for resistor to use in HV network
+
[[File: GEM_triple_smallpeak.png | 150 px]]
 +
[[File: GEM_triple_bigpeak.png | 150 px]]
 +
[[File: GEM_triple_twopeaks.png | 150 px]]
  
references (HV circuit)
+
=Coincidence Measurements for the Plastic scintillator after shielding=
  
 +
; Without source
  
 +
The plastic scintillator count rate before shielding and without source was in average 12 +_ 1 Hz, lead is added to the GEM and to the plastic scintillator which did not change the rate of the coincidence for the plastic scintillator  . Neither closing  the box door with lead nor adding lead to the top of the box  did  make any change in the number of counts for the plastic scintillator.
  
  
 +
;With a source
  
 +
=Background count rate=
  
4.) Simulation
 
  
a.) Zoom in to see target and fission fragments
+
{| border="1" cellpadding="4"
 +
|-
 +
|Date || Time || PSD_e (counts)||  PSD_e (counts/min) || LED (low disctrinimation)(counts)||LED (low disctrinimation)(counts/min)||  LED (high disctrinimation) (counts)||  LED (high disctrinimation) (counts/min)
 +
|-
 +
|07/01/14 || 1166 || 56671 ||  49 || 2936748 || 2519 || 10 || 0.009
 +
|-
 +
|07/01/14 || 231 || 10529 ||  || 572657 ||  || 1542 ||
  
b.) implement Fission Model G4BertiniEvaporation in  Physics list
 
  
=10/7/09=
+
|}
  
==(n,f) event==
+
= data graphs=
  
  
I added the following to the physics list
+
;<math>S_{HLE}</math>
  
<pre>
 
The header files are put into ExN02PhysicsList.cc
 
  
#include "G4HENeutronInelastic.hh"
+
[[File: B_pdaily_counts.png | 150 px]]
#include "G4NeutronInelasticProcess.hh"
 
#include "G4CascadeInterface.hh"
 
#include "G4BertiniEvaporation.hh"
 
  
  else if (particleName == "neutron") {
+
The above graph represents the change in the count rate of B_p, as the shutter is open (green) and as it is closed (red), the error bars get smaller since each point represents the average of two sets of daily measurements, in addition to, changing the PS discriminator's level after the second measurement.
 
      G4CascadeInterface* bertiniModel = new G4CascadeInterface();
 
      G4NeutronInelasticProcess* inelProcess = new G4NeutronInelasticProcess();
 
      inelProcess->RegisterMe(bertiniModel);
 
      pmanager->AddDiscreteProcess(inelProcess);
 
}
 
</pre>
 
  
  
And I saw the event
+
;<math>S_{PSD}</math>
  
  
<pre>
+
[[File: S_pdaily_counts.png | 150 px]]
  
*********************************************************************************************************
+
The above graph has the same legend as the one for B_p, error bars increase for some data when the shutter is open, since one or more of the daily measurements has a higher number of counts because of U-233(4)'s spentaneous fission. (the number of counts is close to the number of counts as the shutter is open and the source is on).
* G4Track Information:  Particle = neutron,   Track ID = 1,   Parent ID = 0
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV  14.3 nm  14.3 nm      Target  NeutronInelastic
 
  
*********************************************************************************************************
+
Small=<math>S_{PSD} - S_{PSDE}</math>
* G4Track Information:  Particle = U238[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng TrakLeng    Volume    Process
+
=Testing GEM Experiment test 10/23/13=
    0      0 fm      0 fm    -10 cm  25.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.14e+03 fm -7.54e+03 fm    -10 cm      0 eV  25.7 keV  101 nm    101 nm      Target      hIoni
 
  
</pre>
+
The GEM detector was tested for signal and discharge as the voltage of the cathode and HV-circuit divider is 3.3 kV and 2.7 kV successively.
  
By oct. 8 the follwing event is tracked by the GEANT4 with U-238 target with 7 MeV neutron beam:
+
The GEM detector signal is observed as it used to work before. the pictures below show the signal detected as the shutter is open and as it is close.
  
<pre>
 
:*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm      7 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      7 MeV    0 eV      5 um      5 um      Target  Transportation
 
    2      0 fm      0 fm  -9.85 cm      0 eV      0 eV  1.51 mm  1.51 mm      Tracker  NeutronInelastic
 
  
*********************************************************************************************************
+
{| border="1" cellpadding="4"
* G4Track Information:   Particle = N14[0.0],  Track ID = 5,  Parent ID = 1
+
|-
*********************************************************************************************************
+
| shutter close ||  [[File: GEM_close_1.png | 40 px]]|| [[File: GEM_close_2.png | 40 px]]
 +
|-
 +
| shutter open || [[ File:GEM_open_1.png | 40 px ]]|| [[File: GEM_open_2.png | 40 px]] || [[File: GEM_open_3.png | 40 px]]|| [[File: GEM_open_4.png | 40 px]]
 +
|}
  
Step#     X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
=THGEM#9 Counting Experiment test 1/4/13=
    0      0 fm      0 fm  -9.85 cm  1.45 MeV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1  -63.2 um  33.9 um  -9.69 cm    177 keV  1.27 MeV  1.56 mm  1.56 mm      Tracker      hIoni
 
    2  -181 um    63 um  -9.59 cm      0 eV    177 keV 1.13 mm  2.69 mm      Tracker      hIoni
 
  
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#     X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
[[THGEM#9 Counting Experiment]]
    0      0 fm      0 fm  -9.85 cm    382 keV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1  -2.37 mm  -1.45 mm    -10 cm    382 keV    0 eV  3.16 mm  3.16 mm      Tracker  Transportation
 
    2  -2.38 mm  -1.45 mm    -10 cm    382 keV    0 eV  10.5 um  3.17 mm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
=GEM HV-divider circuit=
* G4Track Information:  Particle = gamma,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -9.85 cm  1.66 MeV    0 eV      0 fm      0 fm      Tracker    initStep
 
    1    10 cm  1.17 cm  -2.11 cm  1.66 MeV    0 eV  12.7 cm  12.7 cm      Tracker  Transportation
 
    2    10 cm  1.17 cm  -2.11 cm  1.66 MeV    0 eV  6.35 um  12.7 cm  OutOfWorld  Transportation
 
</pre>
 
  
I thick we still need to improve the stepping verbose, since whenever the beam is run, there is a limited number of events are detected and usually are the neutrons that just pass, I run the beam only with 100 neutrons only to track the useful ones.
+
GEM HV-divider circuit in shown in the figure, measurements were recorded for for top and bottom voltage of each preamplifier.  
  
By oct. 12 , fission event is detected after I turned off the inelastic process code using U-238 as target , the result :
+
<center>[[Image:GEM_HV_Dist_Net.jpg | 100px]]</center>
  
<pre>
 
  
### Run 2 start.
+
The table below shows value of the voltage on each  preamplifier's side relative to ground.
  
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng TrakLeng    Volume    Process
+
{| border="1" cellpadding="4"
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
+
|-
    1      0 fm      0 fm    -10 cm      0 eV      0 eV    131 nm    131 nm      Target    nFission
+
| <math> V_{source} \pm 1 </math>  || <math> V_{G1T} \pm 1 </math> || <math> V_{G1B} \pm 1 </math>|| <math> \Delta V_1 \pm 1 </math>  || <math> V_{G2T} \pm 1 </math> || <math> V_{G2B} \pm 1 </math>|| <math> \Delta V_2 \pm 1</math> || <math> V_{G3T} \pm 1 </math> || <math> V_{G3B} \pm 1 </math> || <math> \Delta V_3 \pm 1 </math>
 +
|-
 +
| 2550 || 2579 ||  2259 ||304 || 1671|| 1394 || 279 ||  818|| 570 ||245 
 +
|-
 +
| 2600 || 2630 || 2303 ||310 || 1704|| 1421 || 285 ||834|| 581 || 250
 +
|-  
 +
| 2650 || 2680 || 2348 || 316|| 1737||  1449  || 290 || 850|| 592 || 255
 +
|-
 +
| 2700 || 2731 || 2393 ||322 || 1770|| 1476 ||296 ||866|| 603 || 260
 +
|-
 +
| 2750 || 2781 ||  2373|| 328 || 1803|| 1503 || 302 ||882|| 614 ||264
 +
|-  
 +
| 2800 || 2832 ||  2482|| 332 || 1836|| 1530|| 307 || 898|| 625 || 269
  
*********************************************************************************************************
 
* G4Track Information:  Particle = U238[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  25.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.14e+03 fm -7.54e+03 fm    -10 cm      0 eV  25.7 keV  101 nm    101 nm      Target      hIoni
 
  
*********************************************************************************************************
+
|}
* G4Track Information:  Particle = gamma,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  96.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -759 nm  -940 nm    -10 cm  96.7 keV    0 eV  3.58 um  3.58 um      Target  Transportation
 
    2  -4.5 cm  -5.58 cm    10 cm  96.7 keV    0 eV  21.2 cm  21.2 cm      Tracker  Transportation
 
    3  -4.5 cm  -5.58 cm    10 cm  96.7 keV    0 eV  3.72 um  21.2 cm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
The source voltage means the voltage value on the 4-channel CAEN N470 display. (suppose to be equal to the voltage of the top GEM1).
    0      0 fm      0 fm    -10 cm    343 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.49 um    3.5 um    -10 cm    343 keV    0 eV  4.07 um  4.07 um      Target  Transportation
 
    2  3.46 um  8.14 um    -10 cm    343 keV    0 eV    5.4 um  9.47 um        World  Transportation
 
    3  4.25 cm    10 cm  -5.86 cm    343 keV    0 eV  11.6 cm  11.6 cm      Tracker  Transportation
 
    4  4.25 cm    10 cm  -5.86 cm    343 keV    0 eV  4.07 um  11.6 cm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
the values are going to be an input for ANSYS which is going to simulate the electric field for each source voltage separately, ANSYS' output files will be an input for Garfield to simulate the electron multiplication by the triple GEM.
* G4Track Information:  Particle = gamma,   Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
= GEM alpha-Beta detector counter=
    0      0 fm      0 fm    -10 cm    597 keV    0 eV      0 fm      0 fm      Target    initStep
+
[[GEM Alpha-Beta detector counter]]
    1  -2.93 um  -3.5 um    -10 cm    597 keV    0 eV  4.65 um  4.65 um      Target  Transportation
 
    2  -11.6 um  -13.8 um    -10 cm    597 keV    0 eV  13.7 um  18.4 um        World  Transportation
 
    3  -8.38 cm    -10 cm  -7.56 cm    597 keV    0 eV  13.3 cm  13.3 cm      Tracker  Transportation
 
    4  -8.38 cm    -10 cm  -7.56 cm    597 keV    0 eV  4.65 um  13.3 cm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
=GEM gain data graphs and GEM Calibration in LDS=
* G4Track Information:  Particle = gamma,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
==GEM Detector==
    0      0 fm      0 fm    -10 cm  1.07 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    210 nm  -1.63 um    -10 cm  1.07 MeV    0 eV  3.99 um  3.99 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
[[GEM performance QDC data graphs]]
* G4Track Information:  Particle = gamma,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
[[Calibrating GEM detector]]
    0      0 fm      0 fm    -10 cm  1.68 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.06 um    3.5 um    -10 cm  1.68 MeV    0 eV  5.24 um  5.24 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
 
* G4Track Information:  Particle = gamma,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
==Electronics Flow Chart==
    0      0 fm      0 fm    -10 cm  2.67 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -1.44 um    3.5 um    -10 cm  2.67 MeV    0 eV  3.84 um  3.84 um  OutOfWorld  Transportation
 
  
</pre>
+
[[File:LDS_electronics_flow_chart.png |200px]]
  
Fission event is also detected after I turned off the inelastic process code using Th-232 as target , the result :
 
  
<pre>
+
==GEM Detector and Scintillator==
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
[[GEM and Sci. data and measuurements]]
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV    400 nm    400 nm      Target    nFission
 
  
*********************************************************************************************************
+
=GEM gain data graphs and GEM Calibration at the IAC=
* G4Track Information:  Particle = Th232[0.0],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng TrakLeng    Volume    Process
+
  Haitham may only alter the QDC's dual timer and a CFD for the QDC in the IAC DAQ.
    0      0 fm      0 fm    -10 cm    39 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.21e+04 fm -2.88e+04 fm    -10 cm      0 eV    39 keV  177 nm    177 nm      Target      hIoni
 
  
*********************************************************************************************************
+
Haitham may only add signals to the NIM->ECL translator
* G4Track Information:  Particle = gamma,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng TrakLeng    Volume    Process
+
  Haitham is not allowed to change any cables that are used for the PAA setup
    0      0 fm      0 fm    -10 cm    143 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    3.5 um  -92.2 nm    -10 cm    143 keV    0 eV  4.75 um  4.75 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
;Summary
* G4Track Information:  Particle = gamma,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
The detector is installed in the IAC after modifications took place in the detector design.
    0      0 fm      0 fm    -10 cm    843 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -1.1 um    165 nm    -10 cm    843 keV    0 eV  3.29 um  3.29 um      Target  Transportation
 
    2  -7.09 cm  1.07 cm    10 cm    843 keV    0 eV  21.2 cm  21.2 cm      Tracker  Transportation
 
    3  -7.09 cm  1.07 cm    10 cm    843 keV    0 eV  3.72 um  21.2 cm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
These modifications are:
* G4Track Information:   Particle = gamma,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
1- The detector kipton window's area increased to the same size of the GEM cards( 10X10 cm)
    0      0 fm      0 fm    -10 cm    956 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -1.85 um -2.71 um    -10 cm   956 keV    0 eV    5.1 um    5.1 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
2- The distance of the cathode from the first GEM increased up to 1.2 cm. previously the distance was about 3.5 mm. (No change in GEM's distances 2.8mm, or the readout 0.5 mm)
* G4Track Information:  Particle = gamma,   Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
Increasing the drift distance demands an increase in cathode potential to maintain the same values of the electric field in the old setup.
    0      0 fm      0 fm    -10 cm  1.42 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.5 um  -300 nm    -10 cm  1.42 MeV    0 eV  4.41 um  4.41 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
3- The detector is installed in a wooden box, in addition to a plastic scintillator which was placed to cover part of the detector window.
* G4Track Information:  Particle = neutron,  Track ID = 3,   Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.43 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  2.67 um    3.5 um    -10 cm  1.43 MeV    0 eV  4.46 um  4.46 um  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
[[GEM performance data graphs]]
* G4Track Information:  Particle = gamma,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  1.66 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    393 nm  -3.5 um    -10 cm  1.66 MeV    0 eV  3.54 um  3.54 um      Target  Transportation
 
    2    494 nm  -4.39 um    -10 cm  1.66 MeV    0 eV    904 nm  4.44 um  OutOfWorld  Transportation
 
>>> Event 0
 
    8 trajectories stored in this event.
 
</pre>
 
  
 +
==Electronics Flow Chart==
  
=10/20/09=
+
[[File:IAC_electronics_flow_chart.png |200px]]
  
1.) Redo resistor network below  to reflect one in paper.  Find resistance required to have 2000 Volt difference between two the top and bottom of a GEM card and have correct power rating.
 
  
 +
[[File:IAC_n.png |200px]]
  
 +
=U-233 fission x-section data and fission yield=
  
Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[http://wiki.iac.isu.edu/index.php/File:Media-Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors_(HV_circuit).pdf#filelinks]
+
[[File:U-233_fissionxsection_0.01-100MeV.gif |200px]]
 +
[[File:U-233_fissionxsection_fullenergyrange.gif |200px]]
  
The new HV-circuit is represented by the figure:
+
[[File:U-233_fissionxyield_percent.png |200px]]
  
  
[[Image:2_lines _THGEM_2_lines _THGEM_circuit.png | 200 px|thumb|Circuit 1]][[Image:3l_line_THGEM_circuit.png | 200 px|thumb|Circuit 2]] [[Image:paper_HV_Circuit.png | 200 px|thumb|Circuit 3]]
 
  
 +
== What is the energy distribution of Beta, Photon and alpha from U-233==
  
 +
===Alpha ===
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|           Resistor          || value  || 0.3[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=300KW-2-ND]||  0.62 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=620KW-2-ND]|| 1 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=1.0MW-2-ND]  ||1.25 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204J-1.25M-ND] || 1.5 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-1.5M-ND] ||2 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-2M-ND]|| 3[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=2-1625958-9-ND]  || 5 [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-5M-ND]|| 10[http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204FE-10M-ND] || price
+
| nuclide || Energy (MeV)
 
|-
 
|-
| <math> R_{1} </math> ||  8.6    ||    ||    1  ||  1||        ||      || 1 ||  || 1  ||  ||  10.13
+
| Pb-213  || <span style="color:red"> 8.4</span>  
 
|-
 
|-
|<math>  R_{2} </math>  || 4.3    ||  1 ||      ||  ||        ||      || 2 ||  ||    ||  ||  11.96
+
| Bi-213 || 5.9
 
|-
 
|-
| <math>  R_{3} </math>  || 10    ||    ||      ||  ||        ||      ||  ||  ||    || 1 ||  5.59
+
|At-217 ||6.3  
 
|-
 
|-
| <math>  R_{4} </math>  || 3.3    ||  1 ||      || 1 ||        ||      || 1 ||  ||    ||  ||  6.3  
+
|Fr-221 || 6.3
 
|-
 
|-
| <math> R_{5} </math>   || 4.8    ||    ||      ||    ||        ||      ||    ||  || 1  ||  ||  3.95
+
|Th-229 ||  <span style="color:green">4.85 </span> (alpha spectrum, highest counts for is 4.85 MeV)
|-
 
|        total            ||    || 2  ||  1    ||  2    ||        ||      ||  4  ||  ||  2  || 1 ||       
 
 
|}
 
|}
  
 +
===Gamma===
  
 +
Gamma distribution for U-233 and its daughters are in metioned in details in the documents , [[File:u233_day_gamma.pdf]] <ref>http://www.radiochemistry.org/periodictable/gamma_spectra , Wed. 04/10/2013</ref>
  
 
+
The energy range of the emitted gamma is shown in the following table .
 
 
according to the suggestion to add new line of resistances as represented in the last figure, this change the the old circuit properties. the following table summarizes these differences:
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|             ||  2_lines _THGEM_circuit  || 3l_line_THGEM_circuit
+
| nuclide || Energy Minimum || Energy Maximum (keV)
 +
|-|
 +
| U-233 || 25 || <span style="color:red"> 1,119</span>
 
|-
 
|-
| Total Resistance (Mohm) || 48.45              || 41.7
+
| Ra-225 || 40 || 40
 
|-
 
|-
| Current (mA)||     0.31 ||   0.36
+
|Ac-225 || <span style="color:green">10.5 </span> || 758.9
 
|-
 
|-
| Max. Voltage Per THGEM Foil (V) || (1.43Mohm)444.3 || (1.23Mohm)442.3
+
|Fr-221 || 96.8 || 410.7
|-
 
| Power (W) ||  0.14  || 0.16
 
|}
 
 
 
 
 
2.) reproduce Figure 3 in paper below
 
 
 
http://www.helsinki.fi/~miheikki/system/refs/heikkinen/chep09geant4.pdf
 
 
 
=10/27/09 (Paste processing procedure)=
 
;Paste
 
 
 
[[Paste_painting_procedure]]
 
 
 
;HV Circuit:
 
 
 
Update the figure for the high voltage circuit.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
 
 
 
;Deflection:
 
 
 
Figure is updated for the deflection figure.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#9.2F15.2F09]
 
 
 
;Simulation:
 
 
Chips interface is used but unfortunately the result still the same, a neutron hits then two of them leave without any fragment tracking.
 
 
 
 
 
<pre>
 
 
 
G4StringChipsInterface* theCascade = new G4StringChipsInterface();
 
G4HadronFissionProcess* fissionProcess = new G4HadronFissionProcess();
 
fissionProcess->RegisterMe(theCascade);
 
pmanager->AddDiscreteProcess(fissionProcess);
 
 
 
</pre>
 
 
 
<pre>
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    6.5 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      0 fm      0 fm    -10 cm      0 eV      0 eV  4.31 um  4.31 um      Target    nFission
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = U237[0.0],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm  25.2 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1 -2.35e+03 fm 4.81e+03 fm    -10 cm      0 eV  25.2 keV  99.7 nm  99.7 nm      Target      hIoni
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    165 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.44 um    -77 nm    -10 cm    165 keV    0 eV    1.6 um    1.6 um      Target  Transportation
 
    2    10 cm  -5.35 mm  -5.22 cm    165 keV    0 eV  11.1 cm  11.1 cm      Tracker  Transportation
 
    3    10 cm  -5.35 mm  -5.22 cm    165 keV    0 eV  5.55 um  11.1 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -10 cm    156 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.7 um    -5 um    -10 cm    156 keV    0 eV  5.69 um  5.69 um      Target  Transportation
 
    2  -41.9 um  -77.6 um    -10 cm    156 keV    0 eV  82.6 um  88.3 um  OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
=10/30/09=
 
 
 
;Resistors for THGEM HV-circuit:
 
 
 
{| border="1" cellpadding="4"
 
 
|-
 
|-
| || 5 MOHM [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204JE-5M-ND] and [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204J-5M-ND]|| 10 MOHM [http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=SM204FE-10M-ND]
+
|At-217 || 140 || 593.1
 
|-
 
|-
| quantity || 6 || 12
+
|Bi-213 || 323.81 || <span style="color:red">1,119.4 </span>
 
|}
 
|}
  
=11/3/09=
 
 
;Paste
 
 
need to finish procedure in link below.  Insert info from vendor describing reducing the paster for an ink jet printer.
 
 
[[Paste_painting_procedure]]
 
 
Give a copy of paste MSDS to Roy dunker and ask for permission to use their oven located in the LDS hood
 
 
;HV Circuit:
 
  
Update the figure for the high voltage circuit.[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
+
===Beta===
 
 
Arrange with Tamuna some time to use the power supply to check power on the circuit design.
 
 
 
;Deflection:
 
 
 
Redo deflection figure.  [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#9.2F15.2F09]
 
 
 
;Simulation:
 
 
   
 
   
reproduce Figure 3 in paper below
+
Beta particles are  emitted mainly from U-233 daughters as shown in the figure <ref> http://itu.jrc.ec.europa.eu/index.php?id=204, Wed. 04/10/2013 </ref>
 
 
[[File:Abla_incl.pdf]]
 
  
[[File:abla_incl_models.pdf]]
+
[[File:U-233_decay_beta_energy.jpg |200px]]
  
=11/11/09=
+
U-233 -> Th-229, emitted alpha particles have energy of 4.8 MeV.  
;Paste :
 
please follow the link for the update: [http://wiki.iac.isu.edu/index.php/Paste_painting_procedure#11.2F9.2F09]
 
  
 +
Insert energy distribution for Betas
  
;HV Circuit:
+
The following table shows the negative beta emitter nuclides,their parent nuclides, and  their half lives:
  
The circuit were tested as was suggested the figure [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09]
 
, very low current was passing through the circuit which relatively decreased the dissipated power through the resistors.
 
  
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|Resistor arrangements and values || Current(P.S.) (uA)<math>\pm</math> 1|| Current through each line (uA)<math>\pm</math> 1 (2 lines only) ||<math> V_{THGEM1} </math> (V) <math>\pm</math> 1 || <math> V_{THGEM2} </math> (V)<math>\pm</math> 1 || dissipated power (W)<math>\pm</math> 0.1%
+
|Nuclides || energy (MeV) || half life
 
|-
 
|-
| Third circuit [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] || 50 || 25 || 105 || 85 || 0.025
+
| <math>Ra^{225} \rightarrow Ac^{225}</math> ||<span style="color:green">0.357 </span> || 14d.
 
|-
 
|-
| removing <math> R_{2}</math> ||50 || 25|| 136 || 136 || 0.006
+
|<math>Bi^{213} \rightarrow Po^{213}</math> || 1.426 || 46min.
 
|-
 
|-
| <math> R_{1}</math> = 20 Mohm || 41 || 20.5|| 177 || 181 ||0.008
+
|<math>Tl^{209} \rightarrow Pb^{209}</math> || <span style="color:red">1.981 </span> || 2.2 min.
 
|-
 
|-
| <math> R_{1}</math> = 30 Mohm (with one protection resistor) ||38 || 19 || 195 || 186 || 0.11
+
|<math>Pb^{209} \rightarrow Bi^{209}</math> || 0.644 || 3.25h
 
|-
 
|-
|<math> R_{1}</math> = 30 Mohm (with all figure resistors) || 38 || 19 || 159 || 122 || 0.11
+
|<math>Bi^{209}</math> || 1.893 || stable
 
|}
 
|}
please note that all the previous measurements with  <math> HV+</math> = 1 kV
 
  
 +
==What is the energy distribution after the 1 mm FR4 shutter==
  
Result: highly recommended to increase the main resistor(s) which will provide the THGEM foil with needed potential to 30 Mohm which make the current less that 19 uA in each one,  but at the same time this will provide each foil with around 200 V when the the power supply is providing 1 kV.So using 15 kV power supply will easily provide each foil with 3000 V (which is our goal).
 
  
 +
=== electron shutter penetration===
  
;Simulation:
+
The energy distribution below represents the incidence electron on a 1 mm FR4 shutter.
  
geant4.9.2.p01/examples/extended/radioactivedecay/exrdm/src
+
[[File:E_spectrum.png |90 px]]
  
Abla model has a little problem to be defined, I tried to use the following statement in ExN02PhysicsList but unfortunately is not working.
+
graph of electron energy for electron penetrating shutter (did any not penetrate?, how many?)
  
<pre>
 
    G4InclCascadeInterface* bertiniModel = new G4InclCascadeInterface();
 
    G4AblaFission* fissionProcess = new G4AblaFission();
 
    fissionProcess->RegisterMe(bertiniModel);
 
    pmanager->AddDiscreteProcess(fissionProcess);
 
</pre>
 
  
  
Depending on a reference used in the same paper [[File:abla_incl_models.pdf]], Binary and Bertini models are used for neutron or proton interactions
 
<pre>
 
  
G4BinaryCascade* bcModel = new G4BinaryCascade();
+
photons below were produced by above incident electron?
G4HadronFissionProcess* fissionProcess = new G4HadronFissionProcess();
+
The energy distribution of photons was observed on the opposite side of the shutter
fissionProcess->RegisterMe(bcModel);
 
pmanager->AddDiscreteProcess(fissionProcess);
 
</pre>
 
  
 +
[[File:Photon_spectrum.png |90 px]]
  
(same as ABLA and the results can be compared). So i added Binary Cascade model to  ExN02PhysicsList But unfortunately the result is weird!!!
 
the following error message is not convenient !!
 
  
<pre>
+
Electrons (with least energy from U-233= 0.2 MeV) pass through the shutter have the energy distribution below.
Computed tolerance = 2.0001e-09 mm
 
Target is 0.001 cm of Carbon
 
There are 1 chambers in the tracker region. The chambers are 50 mm of ArgonGas
 
The distance between chamber is 10 cm
 
Segmentation fault
 
</pre>
 
  
=12/8/09=
+
===alpha shutter penetration===
  
<pre>
+
===photons===
      else if (particleName == "proton") {
 
      //protons
 
        G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
 
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
        G4ProtonInelasticProcess *protonInelasticProcess = new G4ProtonInelasticProcess();
 
        protonInelasticProcess->AddDataSet(new G4ProtonInelasticCrossSection());
 
        protonInelasticProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(protonInelasticProcess);
 
      }
 
      else if (particleName == "neutron") {
 
      //neutrons
 
        G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
 
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
        G4NeutronInelasticProcess *neutronInelasticProcess = new G4NeutronInelasticProcess();
 
        neutronInelasticProcess->AddDataSet(new G4NeutronHPFissionData());
 
        neutronInelasticProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(neutronInelasticProcess);
 
  
</pre>
+
== Number of ions produced from Beta and Photon in ArCo2==
  
Below is a sample event which appears to be the reaction
+
EMTest10 is used to calculate the average number of ions (electrons) when a 101 beta of 1 MeV are fired in a world that contains ArCO2. (13.5 per primary electron).
  
<math>n + {330 \atop 92 }U_{238} \rightarrow {173 \atop 49 }In_{124} + {152 \atop 43 }Tc_{109} + 6n</math>
 
  
 +
[[File:SecondaryElectron_Energy_1Mevbeta.png |90 px]]
  
<pre>
+
= The needed time to observe the GEM signal=
  *********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
In the case of triple GEM detector with a gas flow of 0.3 SCFH and 2650V and 2950V on GEM cards and cathode successively, a signal lower than the noise (of 16 mV and amplified twice) is observed at 770.0s +/- 0.1.
    0     0 fm      0 fm    -80 cm    10 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    10 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -1.94 mm      0 eV      0 eV  3.06 mm  79.8 cm      Target  NeutronInelastic
 
  
*********************************************************************************************************
+
The normal rate (8 MHz +/- 2 as measured by the oscilloscope) is observed after 952.9s +/- 0.1.
* G4Track Information:  Particle = In124[16830.9],  Track ID = 9,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
=THGEM card tasks and tests=
    0      0 fm      0 fm  -1.94 mm  84.1 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -686 um  1.79 mm    -5 mm  84.1 MeV    0 eV  3.61 mm  3.61 mm      Target  Transportation
 
    2  -17.9 cm  46.7 cm    -80 cm  84.1 MeV    0 eV  93.8 cm  94.2 cm  OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
;New THGEM cards:
* G4Track Information:   Particle = neutron,  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
Two new fully machined cards are going to be tested in air and ArCH4, if they passes 2000 V potential bwtween the top and the bottom, then they are going to be installed in ArCh4 gas chamber.
    0      0 fm      0 fm  -1.94 mm    215 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -3.93 mm    -5 mm  -3.86 mm    215 keV    0 eV  6.64 mm  6.64 mm      Target  Transportation
 
    2  -62.9 cm    -80 cm  -30.8 cm    215 keV    0 eV  1.06 m    1.06 m    OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
The older THGEM cards will have a high voltage enough to have one spark/min to clean impurities or surface defects.
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
=GEM Signal after the latest modification on the fission chamber 07/01/13=
    0      0 fm      0 fm  -1.94 mm  2.42 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.86 mm    271 um    -5 mm  2.42 MeV    0 eV    4.2 mm    4.2 mm      Target  Transportation
 
    2  -74.8 cm  7.07 cm    -80 cm  2.42 MeV    0 eV  1.09 m    1.1 m    OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
The signal of the detector is observed as the shutter is open and close.
* G4Track Information:  Particle = Tc109[16830.9],  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
{| border="1" cellpadding="4"
    0      0 fm      0 fm  -1.94 mm  90.1 MeV    0 eV      0 fm      0 fm      Target    initStep
+
|-
    1  -2.79 mm  1.98 mm    -5 mm  90.1 MeV    0 eV  4.59 mm  4.59 mm      Target  Transportation
+
| shutter close || [[File: GEM_close.jpg | 40 px]]|| [[File: GEM_close1.jpg | 40 px]]|| [[File: GEM_close2.jpg | 40 px]] || [[File: GEM_open.jpg | 40 px]]
    2    -73 cm  51.8 cm    -80 cm  90.1 MeV    0 eV  1.19 m    1.2 m    OutOfWorld  Transportation
+
|-
 +
| shutter open || [[ File:GEM_open_7_1.jpg | 40 px ]]
  
*********************************************************************************************************
+
|}
* G4Track Information:  Particle = neutron,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  2.85 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.26 mm      5 mm  -3.15 mm  2.85 MeV    0 eV  5.62 mm  5.62 mm      Target  Transportation
 
    2  -36.2 cm    80 cm  -19.5 cm  2.85 MeV    0 eV  89.4 cm  89.9 cm  OutOfWorld  Transportation
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
  
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
+
=GEM's signal testing when it a long cable is used=
    0      0 fm      0 fm  -1.94 mm  1.36 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -4.91 mm      5 mm  -4.1 mm  1.36 MeV    0 eV  7.33 mm  7.33 mm      Target  Transportation
 
    2  -78.6 cm    80 cm  -34.6 cm  1.36 MeV    0 eV  1.17 m    1.17 m    OutOfWorld  Transportation
 
  
*********************************************************************************************************
+
The GEM signal is tested when a long cable is used to transfer the signal to the oscilloscope as the shutter is open, and without the cable. Oscilloscope pictures shows an attenuation to the signal up to 30%.
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm  7.03 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -2.6 mm      5 mm  -2.38 mm  7.03 MeV    0 eV  5.65 mm  5.65 mm      Target  Transportation
 
    2  -41.6 cm    80 cm  -7.21 cm  7.03 MeV    0 eV  89.9 cm  90.4 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -1.94 mm    287 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  1.54 mm  -3.74 mm    -5 mm    287 keV    0 eV  5.07 mm  5.07 mm      Target  Transportation
 
    2    33 cm    -80 cm  -65.6 cm    287 keV    0 eV  1.08 m    1.08 m    OutOfWorld  Transportation
 
>>> Event 4
 
    9 trajectories stored in this event.
 
5 events have been kept for refreshing and/or reviewing.
 
 
 
 
 
</pre>
 
 
 
=12/14/09=
 
 
 
1.) For class project overlap GEANT4 fission atomic mass distribution with data locate in NIM article:  n U-235 measurements : Diiorio NIM vol B147 (1977)487
 
 
 
2.) Create Xmgrace file to reproduce graph below.  Upload original measurements and make a table in the wiki.
 
 
 
[[File:Tingjin_IntConfNucDataforScienceTech_2007.pdf]]
 
 
 
3.) HV measurements
 
 
 
 
 
;Pb Proton-fission:
 
The mass number is tracked for the fragment instead of he name by
 
 
 
1-Edit ExN02SteppingVerbose.cc in for-loop, replace ParticleName by AtomicMass.
 
 
 
2- Add the the following to for-loopif:
 
 
 
 
 
  (fTrack->GetDefinition()->GetPDGEncoding()==2212 &&fStep->GetPostStepPoint()->GetProcessDefinedStep()->GetProcessName()=="NeutronInelastic" && fTrack->GetVolume()->GetName() =="Target" && (*fSeco$)  [lp1]->GetDefinition()->GetAtomicMass()>1)
 
                    outfile
 
                    << (*fSecondary)[lp1]->GetDefinition()->GetAtomicMass()
 
 
 
 
 
n U-235 measurements : Diiorio NIM vol B147 (1977)487
 
 
 
[[File:Tingjin_IntConfNucDataforScienceTech_2007.pdf]]
 
 
 
 
 
 
 
[[File:Th-232_fission_cross_section.jpg|200px]]
 
 
 
=12/15/2009=
 
; Thermal Neutron and U_235 fission: [[File:Diiorio NIM vol B147 (1977)487.pdf]]
 
 
 
 
 
1) For thermal neutron (0.025 MeV) we can not use the same class mentioned in [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#12.2F8.2F09] th Simulation were running for a long time but not event.
 
 
 
2) Different Neutron data sets were used also:
 
 
 
  neutronInelasticProcess->AddDataSet(new G4HadronFissionDataSet()); (does not give any event)
 
  neutronInelasticProcess->AddDataSet(new G4NeutronHPorLFissionData());(compiles perfectly but GEANT4 crashes after 1st neutron fired)
 
 
 
3) Recently a new presentation done by describes the the thermal neutron interactions, he is replacing the Inelastic process to Elastic process even registered by other classes or used with neutron data sets. [[File:THermal_neutrons_interactions.pdf]]
 
 
 
=01/05/10=
 
 
 
;Simulation of the mass distribution spectra for Throrium-232 for 7.5 MeV:
 
 
 
[[File:Energy_7.5_a_include1.jpg|100px]]    [[File:Energy_7.5_a_biggerthan1.jpg|100px]]
 
 
 
(1st figure is the full spectrum but the 2nd one for a>1)
 
 
 
Three kinds of events tracked :
 
 
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -3.06 mm      0 eV      0 eV  1.94 mm  79.7 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  3(Rest= 0,Along= 0,Post= 3), #SpawnTotal=  3 ---------------
 
    :      0 fm      0 fm  -3.06 mm    578 keV        1
 
    :      0 fm      0 fm  -3.06 mm    291 keV        1
 
    :      0 fm      0 fm  -3.06 mm  35.5 keV      231
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Th231[14330.9],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm  35.5 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    251 um    2.7 mm      5 mm  35.5 keV    0 eV    8.5 mm    8.5 mm      Target  Transportation
 
    2  2.43 mm  2.61 cm    7.5 cm  35.5 keV    0 eV  7.39 cm  8.24 cm        World  Transportation
 
    3  3.17 mm  3.41 cm  9.87 cm  35.5 keV    0 eV    2.5 cm  10.7 cm      Tracker  StepLimiter
 
    4  3.91 mm    4.2 cm  12.2 cm  35.5 keV    0 eV    2.5 cm  13.2 cm      Tracker  StepLimiter
 
    5  4.65 mm  4.99 cm  14.6 cm  35.5 keV    0 eV    2.5 cm  15.7 cm      Tracker  StepLimiter
 
    6  5.39 mm  5.79 cm    17 cm  35.5 keV    0 eV    2.5 cm  18.2 cm      Tracker  StepLimiter
 
    7  6.12 mm  6.58 cm  19.3 cm  35.5 keV    0 eV    2.5 cm  20.7 cm      Tracker  StepLimiter
 
    8  6.86 mm  7.37 cm  21.7 cm  35.5 keV    0 eV    2.5 cm  23.2 cm      Tracker  StepLimiter
 
    9  6.98 mm    7.5 cm  22.1 cm  35.5 keV    0 eV  3.94 mm  23.6 cm      Tracker  Transportation
 
  10    2.5 cm  26.9 cm    80 cm  35.5 keV    0 eV  61.1 cm  84.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm    291 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -624 um  -1.4 mm    -5 mm    291 keV    0 eV  2.47 mm  2.47 mm      Target  Transportation
 
    2  -25.6 cm  -57.4 cm    -80 cm    291 keV    0 eV  1.01 m    1.02 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,   Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -3.06 mm    578 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1    434 um    -5 mm    811 um    578 keV    0 eV  6.34 mm  6.34 mm      Target  Transportation
 
    2  6.94 cm    -80 cm  61.6 cm    578 keV    0 eV  1.01 m    1.01 m    OutOfWorld  Transportation
 
</pre>
 
 
 
;and
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm  -2.2 mm      0 eV      0 eV    2.8 mm  79.8 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  2(Rest= 0,Along= 0,Post= 2), #SpawnTotal=  2 ---------------
 
    :      0 fm      0 fm  -2.2 mm  1.91 MeV        1
 
    :      0 fm      0 fm  -2.2 mm  19.7 keV      232
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Th232[5594.3],  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -2.2 mm  19.7 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1  -560 um  -4.06 mm      5 mm  19.7 keV    0 eV  8.29 mm  8.29 mm      Target  Transportation
 
    2    -6 mm  -4.35 cm    7.5 cm  19.7 keV    0 eV  8.06 cm  8.88 cm        World  Transportation
 
    3  -7.69 mm  -5.58 cm  9.67 cm  19.7 keV    0 eV    2.5 cm  11.4 cm      Tracker  StepLimiter
 
    4  -9.37 mm  -6.81 cm  11.8 cm  19.7 keV    0 eV    2.5 cm  13.9 cm      Tracker  StepLimiter
 
    5  -1.03 cm  -7.5 cm  13.1 cm  19.7 keV    0 eV  1.42 cm  15.3 cm      Tracker  Transportation
 
    6  -6.23 cm  -45.2 cm    80 cm  19.7 keV    0 eV    77 cm  92.3 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm  -2.2 mm  1.91 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    689 um      5 mm  2.07 mm  1.91 MeV    0 eV  6.61 mm  6.61 mm      Target  Transportation
 
    2    11 cm    80 cm  68.1 cm  1.91 MeV    0 eV  1.05 m    1.06 m    OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
;In addition to the fission event:
 
<pre>
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 1,  Parent ID = 0
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    -80 cm    7.5 MeV    0 eV      0 fm      0 fm        World    initStep
 
    1      0 fm      0 fm    -5 mm    7.5 MeV    0 eV  79.5 cm  79.5 cm        World  Transportation
 
    2      0 fm      0 fm    1.2 mm      0 eV      0 eV    6.2 mm  80.1 cm      Target  NeutronInelastic
 
    :----- List of 2ndaries - #SpawnInStep=  7(Rest= 0,Along= 0,Post= 7), #SpawnTotal=  7 ---------------
 
    :      0 fm      0 fm    1.2 mm    138 keV        1
 
    :      0 fm      0 fm    1.2 mm  2.37 MeV        1
 
    :      0 fm      0 fm    1.2 mm  78.3 MeV      123
 
    :      0 fm      0 fm    1.2 mm  1.83 MeV        1
 
    :      0 fm      0 fm    1.2 mm  4.17 MeV        1
 
    :      0 fm      0 fm    1.2 mm    653 keV        1
 
    :      0 fm      0 fm    1.2 mm  89.1 MeV      105
 
    :----------------------------------------------------------------- EndOf2ndaries Info ---------------
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Mo105[14330.9],  Track ID = 8,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  89.1 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm    442 um    1.9 mm  89.1 MeV    0 eV  5.07 mm  5.07 mm      Target  Transportation
 
    2    80 cm  7.07 cm  11.4 cm  89.1 MeV    0 eV  80.6 cm  81.1 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 7,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm    653 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm  1.85 mm    719 um    653 keV    0 eV  5.35 mm  5.35 mm      Target  Transportation
 
    2    80 cm  29.7 cm  -7.55 cm    653 keV    0 eV  85.1 cm  85.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 6,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  4.17 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  4.44 mm  1.75 mm    -5 mm  4.17 MeV    0 eV  7.82 mm  7.82 mm      Target  Transportation
 
    2  57.4 cm  22.6 cm    -80 cm  4.17 MeV    0 eV      1 m    1.01 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 5,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  1.83 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1  2.07 mm  3.07 mm      5 mm  1.83 MeV    0 eV  5.31 mm  5.31 mm      Target  Transportation
 
    2  4.01 cm  5.96 cm    7.5 cm  1.83 MeV    0 eV  9.77 cm  10.3 cm        World  Transportation
 
    3  5.05 cm    7.5 cm  9.41 cm  1.83 MeV    0 eV  2.66 cm    13 cm      Tracker  Transportation
 
    4  43.4 cm  64.5 cm    80 cm  1.83 MeV    0 eV  98.5 cm  1.11 m    OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = Cd123[14330.9],  Track ID = 4,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  78.3 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    -5 mm  -1.83 mm    485 um  78.3 MeV    0 eV  5.37 mm  5.37 mm      Target  Transportation
 
    2    -80 cm  -29.3 cm  -11.3 cm  78.3 MeV    0 eV  85.4 cm    86 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 3,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm  2.37 MeV    0 eV      0 fm      0 fm      Target    initStep
 
    1    -5 mm    328 um  1.75 mm  2.37 MeV    0 eV  5.04 mm  5.04 mm      Target  Transportation
 
    2    -80 cm  5.25 cm  8.89 cm  2.37 MeV    0 eV  80.1 cm  80.7 cm  OutOfWorld  Transportation
 
 
 
*********************************************************************************************************
 
* G4Track Information:  Particle = neutron,  Track ID = 2,  Parent ID = 1
 
*********************************************************************************************************
 
 
 
Step#      X        Y        Z        KineE    dEStep  StepLeng  TrakLeng    Volume    Process
 
    0      0 fm      0 fm    1.2 mm    138 keV    0 eV      0 fm      0 fm      Target    initStep
 
    1      5 mm  2.66 mm  3.68 mm    138 keV    0 eV  6.18 mm  6.18 mm      Target  Transportation
 
    2    80 cm  42.6 cm  39.9 cm    138 keV    0 eV  98.3 cm    99 cm  OutOfWorld  Transportation
 
 
 
</pre>
 
 
 
 
 
;Voltage Measurements when the THGEM resistor is 30 Mohm in [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] fig.3:
 
  
 +
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|<math> V_{Input} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM1} </math> (kV) <math>\pm</math> 0.001 || <math> V_{THGEM2} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM3} </math> (kV)<math>\pm</math> 0.001 
+
| Long bnc cable|| [[File: GEM_longcable1.jpg | 40 px]]|| [[File: GEM_longcable2.jpg | 40 px]]
 
|-
 
|-
| 1.058  ||0.410  || 0.403 || 0.394 
+
Short bnc cable|| [[ File:GEM_shortcable.jpg | 40 px ]]
|-
+
 
| 2.057    || 0.798  || 0.780 || 0.763
 
|-
 
|3.020  || 1.169 || 1.145 || 1.120
 
|-
 
| 4.021 || 1.557 || 1.524 || 1.492
 
|-
 
|5.066  ||1.961  ||1.920 ||1.879
 
|-
 
| 6.080  || 2.353 ||2.302  ||2.253
 
|-
 
|7.041  ||2.721  ||2.662  || 2.607
 
|-
 
|8.094  ||3.122  ||3.058  || 2.989
 
|-
 
|9.065  || 3.495 || 3.420 || 3.346
 
|-
 
|10.120  ||3.896  ||3.814  || 3.733
 
|-
 
|11.135  || 4.281 ||4.192  || 4.097
 
|-
 
|12.032  ||4.619  || 4.520 || 4.422
 
|-
 
|13.017  || 4.992 || 4.883 || 4.760
 
 
|}
 
|}
  
=01/11/10=
 
;HV circuit:
 
The table below shows the voltage measurements for the HV circuit represented by fig.3 [http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#10.2F20.2F09] with THGEM-resistor is 180 Mohm.
 
The input voltage choice is based on the maximum voltage capability of the available power supplies in LDS until the date above.
 
  
 +
=Roy's detector infomation and measurements=
 +
 +
U-233 metal deposited source is measured by Protean Instrument corporation gaseous detector, has a model number of WPC9450 (serial number: 0915723)and uses (P10) gas mixture, as shown below:
 +
 
{| border="1" cellpadding="4"
 
{| border="1" cellpadding="4"
 
|-
 
|-
|<math> V_{Input} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM1} </math> (kV) <math>\pm</math> 0.001 || <math> V_{THGEM2} </math> (kV)<math>\pm</math> 0.001 ||<math> V_{THGEM3} </math> (kV)<math>\pm</math> 0.001 
+
| Shutter position || Alpha particles /min.|| Beta particles /min.
 
|-
 
|-
| 1.030 ||0.087 || 0.800 || 0.790 
+
Open || 6879 || 900
 
|-
 
|-
| 4.005    || 3.158  || 3.100 || 3.066
+
| Close || 1 || 38
|-
 
|5.010  || 3.949 || 3.887 || 3.836
 
|-
 
|8.009*  || 6.300 || 6.214 || 6.136
 
 
|}
 
|}
  
  *Expected a higher voltage measurements for THGEM resistors closer to the voltage of source if THGEM resistors are replaced by resistor of 250-300 Mohm.
+
The source was in a plate of a diameter of 16 cm which was exposed to to the sensitive part of the detector of a height of 2-3 mm.
  
=1/22/10=
+
The activity  of the source is calculated based on the solid angle <math> \frac {A \times W}{4\pi} </math>
  
 +
where '''A''' is the count per second
 +
and '''W''' is the detector solid angle.
  
1.) Paste practice
+
For the previous measurement, the solid angle is almost <math>2\pi </math>, so the the actvity of the source is twice the measured value in count/second.
  
The paste was applied on a G-10 that has 1 mm hole diameter and 0.5mm and 1mm pitch. After curing the paste made a solid surface on the top on the G-10 surface without penetrating through the holes or dropping on the carrier.
 
  
insert picture
+
=IAC experiment producing neutrons=
  
 +
One of the IAC experiments produces neutrons, the neutron spectrum from Tungsten target  is simulated  outside and inside water (moderator) as shown in the figure below
  
insert resistance measurements
+
[[File:moderator_nspect.png | 70 px]]
  
insert voltage difference measurements
+
In the simulation above , They are interested in close distances to the Tungsten target inside the water container, it is 1 ft cubed container and is made of aluminium and covered polyester.
  
 +
[[File:exp_setup.png | 70 px]]
  
Next paste practice.
+
=References=
  
Apply paste to PC board without drilling holes.  Try to get copper layer for connections.  Don't worry about PC board thickness
 
  
 +
==THGEM design==
  
Order FR4 boards clad on both sides with copper that are the same thickness as the ones in the paper.
+
THGEM#9
  
 +
[[Media:Shalem_MSthesis_march2005.pdf]]
  
2.) HV distributions
 
  
What happens when a 30 mv pulse is pushed onto the ground plane. Do you see it through the capacitor?
+
[[Media:Raz_Alon_MSthesis_Dec2007.pdf]]
  
3.) GEANT4 simulation:
+
==Electric field Simulation==
  
A fission fragment distribution from Th-232 was observed.  Now working on X-section.
+
;Rim size dependence
  
 +
[[ file: THGEM_Efield_simulation.pdf]]
  
A new physics model was installed and is working called "G4HadronFission".
 
  
The goal is to compare this model with "G4Inelastic".
 
  
Which one reproduces cross section?
+
;2010 THGEM design(s):
  
Table with data from measurements.
+
[[ file: THGEM_2009_design_gas_efficiency.pdf]]
  
http://www.nndc.bnl.gov/exfor/endf.htm
 
  
=02/12/10=
+
[[Simulations_of_Particle_Interactions_with_Matter]]
;ED-7100 picture
 
  
[[Image: PC_Board_7100.jpeg | 100 px]]
+
Voss and 3 russian references for Dy(n,x) cross sections
  
  
insert resistance measurements
 
  
insert voltage difference measurements
+
http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum
  
  
Next paste practice.
+
http://www.ippe.obninsk.ru/podr/cjd/kobra13.php?SubentID=30974002
  
Apply paste to PC board without drilling holes. Try to get copper layer for connections. Don't worry about PC board thickness
+
http://www.americanelements.com/thoxst.html
  
 +
http://arxiv.org/pdf/physics/0404119
 +
 +
NIM_A535_2004_93[http://wiki.iac.isu.edu/index.php/Image:Detectors_for_energy-resolved_fast_neutron_imaging.PDF#filehistory]
  
;Order FR4:
 
Order FR4 boards clad on both sides with copper that are the same thickness as the ones in the paper.
 
There are the following kinds of laminates that we can use for the TGEM:
 
{| border="1" cellpadding="4"
 
|-
 
| Laminate || Dielectric Constant (</math> (kV)<math>\pm</math> 0.05) || The Least Thickness (mm)
 
|-
 
| RO4003C  ||  3.38      || 0.101
 
|-
 
| RO4350B  ||  3.48      || 0.203
 
|-
 
| RO3035 ||  3.5  ||    0.13
 
|-
 
| RO3003 ||    3.00(<math>\pm</math> 0.04)  ||  0.13
 
|-
 
| RO3006 ||  6.15(<math>\pm</math> 0.15)    ||    0.13
 
|-
 
| RO3010 ||  10.2(<math>\pm</math> 0.3)    ||    0.13
 
|-
 
| RO4360  ||  6.15 (<math>\pm</math> 0.15)      || 0.203
 
|-
 
| Theta ||    3.9-4.01(without uncertainty)      || 0.056
 
|}
 
It is possible also to have copper on the chosen laminate with 17 um thickness. the laminate thckness last update is available on the following:[[File:Standard Thicknesses, Tolerances and Panel Sizes.pdf]]
 
  
Based on a call done by 02/11/10:
+
[[Image:NIM_A590_2008_pg134_Eberhardt.pdf]]  Prep Targets
  
1- The company can provide us with 30 mil (0.76 mm) and 40 mil (1.02 mm) FR4 thickness plates.
+
Neutron cross sections for different elements [[Media:Neutron_cross_sections.pdf]]
  
2- The minimum copper thickness is 17um which is equivalent to 1/2 oz.
+
http://www-nds.iaea.org/RIPL-2/
  
3-The prices are as the following
+
[[Media:n gamma cross sections at 25 keV.jpg]]
  
{| border="1" cellpadding="4"
+
[[Media:n alpha cross section at 14.2 MeV.jpg]]
|-
 
| FR4-Thickness ||Copper thickness(um)  || price per 12"X18" plate(305X457mm) (us $) || expected laminate series
 
|-
 
|30 mil (0.76 mm) || 17  || 70.17 || 3003
 
|-
 
|40 mil (1.02 mm) || 17  || 99.01 || 3003
 
|-
 
|                || 9    ||  99.01  || 5880
 
|}
 
  
Please note:
+
[[Media:ne cross section at 14 MeV.jpg]]
  
1- Expected change in pricing whenever you call for order but this is just an estimation.
+
[[Media:high enegy fission x-section.jpg]]
  
2- The price of the copper double sided is the same as one-sided ones ??
+
[[Media:N_gamma_x-section_at_400_keV.jpg]]
  
3- the order would be ready within 2 weeks from the date of order.
+
[[Media:x-sections of reactions at 14 MeV.jpg]]
  
4- for non-standard thickness, the customer is expected to buy the whole yeild. (usually is 6 plates but not always!)
+
[[Media:n p x-section at 14.3MeV.jpg]]
  
5- the minimum order is 150$.
+
[[Media: n gamma x-section at 14.5 MeV.jpg]]
  
6- Copper single sided or double sided is possible depending on the thickness of the chosen laminate.
+
[[Media: elastic x-section at 0.5 MeV.jpg]]
  
For ordering :
+
[[Media: n gamma x-section at 1 MeV.jpg]]
call Melody on (480-961-8249) who is a busy lady as described (do not be upset if you have to leave a voicemail)
 
or call 800-227-6437 for any additional information on their products.
 
  
;Important:
+
[[Media: n 2n x-section at 14.3 MeV.jpg]]
  
The order can not be by individuals, the faster way is to make under the university name in a formal paper which determines exactly what we want, Melody is helpful and ready to answer any question such that we will sure 100% of every small detail.
+
Donald James Hughes, Neutron cross sections, 2nd edition 1958, u.s.a atomic energy commission.[[Media:Neutron cross sections.pdf]]
  
2.) HV distributions
+
[[Image:NSAE_ 151_ 2005_ 319-334_ Y.D. Lee.pdf]]
  
What happens when a 30 mv pulse is pushed onto the ground plane. Do you see it through the capacitor?
+
TGEM-2009 [[File:TGEM_2009.pdf]]
  
;GEANT4 simulation:
+
12 Volt power supply system.
  
there are two classes that can simulate the Th-232 fission process,
+
http://www.lnf.infn.it/esperimenti/imagem/doc/NIMA_46128.pdf
  
a- G4InelasticProcess . [[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#01.2F05.2F10]]
+
http://electrontube.com.[[Media: rp097mono HV divier.pdf]]
b- G4HardronFission. the following should be added to the ExN02PhysicsList.cc :
 
  
A fission fragment distribution from Th-232 was observed. Now working on X-section.
+
http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078
  
<pre>
+
http://en.wikipedia.org/wiki/PC_board
  
G4InclAblaCascadeInterface *theModel  = new G4InclAblaCascadeInterface();
+
http://wikipedia.org
        theModel->SetMinEnergy(0.0 * GeV);
 
        theModel->SetMaxEnergy(3.0 * GeV);
 
G4HadronFissionProcess *theFissionProcess = new G4HadronFissionProcess();
 
        theFissionProcess->AddDataSet(new G4NeutronHPFissionData());
 
        theFissionProcess->RegisterMe(theModel);
 
        pmanager->AddDiscreteProcess(theFissionProcess);
 
</pre>
 
  
To compare this model with "G4Inelastic", the simulation is run for just a 100 neutrons, ExN02SteppingVerbose.cc can distinguish between a reaction of one fission fragment (dominant) or two fission fragments(used for calculating the fission cross section for Th-232).
+
[http://arxiv.org/abs/0807.2026 A : concise review on THGEM detectors A.Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. M. F. Dos Santos]
  
[[Image: Fiss_Inel.jpg | 250 px]]
+
GEANT4_Paticles_Models[http://geant4.cern.ch/support/proc_mod_catalog/index.shtml]
  
The previous figure is based on the following calculation.[[File:xsection_cal.txt]]
+
Resistors online store : http://www.justradios.com/rescart.html
  
Which one reproduces cross section?
+
==RETGEMs==
  
Table with data from measurements.
+
[[Media:Jinst8_02_p02012_THGEM_spark.pdf‎]]
  
http://www.nndc.bnl.gov/exfor/endf.htm
 
the website helps to generate graphs depending on the data-libraries stored. after you choose your element you can plot and add more data to your plot.
 
the previous plot for the Th-232 is generated by the same website.[[http://wiki.iac.isu.edu/index.php/Neutron_TGEM_Detector_Abdel#12.2F14.2F09]]
 
  
=2/16/10=
+
[[Media:2010_INST_5_P03002.pdf‎]]
  
 +
;Thick GEM COBRA:
  
1.) Cross section fro Simulation
+
[[Media:THGEM_COBRA_08_10.pdf‎]]
  
Th-232 is a cube 10 x 10 x 10 cm^3.
 
  
The number of incident particles per Area = <math>\rho_{Th-232} V /A = \rho_{Th-232} L_{target} </math>
+
[[Media: Nucl_Phys_B_Bidault_ novel UV photon detector.pdf]]
  
<math>\rho_{Th-232} =  11.72 g/cm^3</math>
+
[[Media:Mauro micro pattern gaseuos detectors.pdf]]
  
<math>\Rightarrow 232.04 g/mol \times 6.02 \times 10^{23} Atoms/mole = 1.4 \times 10^{26}</math>
+
[[Media:Development and First Tests of GEM-Like Detectors With Resistive Electrodes.pdf]]
  
X-sect = <math>\frac{\mbox{number of observed fission events}}{1.64\times 10^{27} atoms/cm^3  \times 10 cm} = 6.1 \times 10^{-29) cm^2 \mbox{number of observed fission events}} \times \left ( \frac{1 barn}{10^{-24} cm^2} \right )</math>
+
http://www.supplydivision.co.uk/genitem.htm
:<math>=  6 \times 10^{-5} </math> (number of observed fission events) barns
 
  
2.) Output a file with fission fragments events containing energy and momentum for each fragment as well as incident neutron energy
 
  
= Th-232 and U-238 Activity in mCi=
+
http://www.radioshack.com/search/index.jsp?kwCatId=&kw=24%20gauge%20wires&origkw=24%20gauge%20wires&sr=1
General information:
 
  
{| border="1" cellpadding="4"
+
Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[http://wiki.iac.isu.edu/index.php/File:Media-Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors_(HV_circuit).pdf#filelinks]
|-
 
|Physical properties || U-238  || Th-232
 
|-
 
| Half life in years|| 4.468 X 10^9  || 1.405 X 10^10
 
|-
 
|Decay rate per second || 4.91 X 10^-18 || 1.56 X 10^ -18
 
|-
 
| Molar Mass g/mol || 238.02891 || 232.0381
 
|-
 
| Activity of 2 kg in mCi || 0.68 || 0.22 
 
|}
 
  
Avogadro's number is 6.0221 X 10^23 /mol
+
Stainless Steel deflection [http://www.bssa.org.uk/topics.php?article=126]
  
1 Ci = 3.7 X 10^10 disintegration/ second
+
==Data Sheets==
  
<math>2 \times 10^3 g \times \frac{1 mol}{238.03 g} \times \frac{6 \times 10^{23} atoms}{mol} \times \frac{decay}{4.4 \times 10^{9} years} \times \frac{yr}{365\times 24 \times 3600 sec} \frac{1 Ci}{3.7 \times 10^{10} decays/sec} \equiv 0.98 mCi</math>
+
radioactive surface cleaner NoCount MDSD [[File:radioactive_surface_cleaner.pdf]].
  
<math> \ Half Life \times \ Decay Rate = ln2 </math>
+
==Th-Xsection references==
 +
[[File:Th-232_fxsection_Behrens_0.7-1.4MeV.pdf]]
  
 +
[[File:Th-232_fxsection_Blons_1975_1.2-1.8MeV.pdf]]
  
<math>2 \times 10^3 g \times \frac{1 mol}{238.03 g} \times \frac{6 \times 10^{23} atoms}{mol} \times \frac{ ln2\times \ decay}{4.4 \times 10^{9} years} \times \frac{yr}{365\times 24 \times 3600 sec} \frac{1 Ci}{3.7 \times 10^{10} decays/sec} \equiv 0.68 mCi</math>
+
[[File:Th-232_fxsection_ermagambetov_0-3MeV.pdf]]
  
=References=
+
[[File:Th-232_fxsection_Henkel_0-9MeV.pdf]]
[[Simulations_of_Particle_Interactions_with_Matter]]
 
  
Voss and 3 russian references for Dy(n,x) cross sections
+
[[File:Th-232_fxsection_Ohsawa_original.pdf]]
  
[[Media:Shalem_MSthesis_march2005.pdf]]
+
[[File:Th-232_fxsection_pankratov_3-35MeV.pdf]]
  
http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum
+
[[File:Th-232_fxsection_protopopov_distancefromthesource.pdf]]
  
 +
[[File:Th-232_fxsection_rago_12.5-18MeV.pdf]]
  
http://www.ippe.obninsk.ru/podr/cjd/kobra13.php?SubentID=30974002
+
==U-238-Xsection and coating references==
  
http://www.americanelements.com/thoxst.html
+
relative cross section and calibration samples characteristics for a well determined number of fissions per second
  
http://arxiv.org/pdf/physics/0404119
+
[[File:Eismont_relative_absolute_nf_induced_ intermediate energy.pdf]]
  
NIM_A535_2004_93[http://wiki.iac.isu.edu/index.php/Image:Detectors_for_energy-resolved_fast_neutron_imaging.PDF#filehistory]
 
  
 +
;U_238 cross section error analysis:
  
[[Image:NIM_A590_2008_pg134_Eberhardt.pdf]] Prep Targets
+
INTERNATIONAL EVALUATION OF NEUTRON CROSS-SECTION STANDARDS, INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 2007 [[File:U238-xsection.pdf]]
  
Neutron cross sections for different elements [[Media:Neutron_cross_sections.pdf]]
+
U_238 (0.5-4MeV) and Th_232 (1-6MeV) fission cross section with statistical error.[[File:Th-232_U238_xsetion_data_ebars.txt]]
  
http://www-nds.iaea.org/RIPL-2/
 
  
[[Media:n gamma cross sections at 25 keV.jpg]]
+
[[File:Pankratov_fxsection_Th232_U233_U235_Np237_U238_5-37MeV.pdf]]
  
[[Media:n alpha cross section at 14.2 MeV.jpg]]
 
  
[[Media:ne cross section at 14 MeV.jpg]]
 
  
[[Media:high enegy fission x-section.jpg]]
+
==Thorium Coating==
 +
ThF4 target for sputtering coatings
  
[[Media:N_gamma_x-section_at_400_keV.jpg]]
+
http://www.cerac.com/pubs/proddata/thf4.htm
  
[[Media:x-sections of  reactions at 14 MeV.jpg]]
+
==Machining Uranium==
  
[[Media:n p x-section at 14.3MeV.jpg]]
+
Uranium will ignite in powder form
  
[[Media: n gamma x-section at 14.5 MeV.jpg]]
 
  
[[Media: elastic x-section at 0.5 MeV.jpg]]
+
http://www.springerlink.com/content/rr072r52163x0833/
  
[[Media: n gamma x-section at 1 MeV.jpg]]
+
;coating Uranium
  
[[Media: n 2n x-section at 14.3 MeV.jpg]]
 
  
Donald James Hughes, Neutron cross sections, 2nd edition 1958, u.s.a atomic energy commission.[[Media:Neutron cross sections.pdf]]
+
[[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVV-46G57SW-53&_user=10&_coverDate=10%2F01%2F1991&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1388383717&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3229e061695dfa28617f9f5db1ef55d]]
  
[[Image:NSAE_ 151_ 2005_ 319-334_ Y.D. Lee.pdf]]
+
http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172
  
TGEM-2009 [[File:TGEM_2009.pdf]]
+
Calorimeters/Detectors:
 +
DU sheet is in wide-scale use as an absorber material in high-energy physics research at large accelerator laboratories. The high atomic number and density of DU presents a large number of atoms per unit volume to interact with the particles emerging from collisions in these detectors. Also the slight background radiation from DU enables in situ calibration of the electronic read out devices within such detectors, thereby improving the accuracy of measurement.  
  
12 Volt power supply system.
+
http://www.2spi.com/catalog/chem/depleted-uranium-products.html
  
http://www.lnf.infn.it/esperimenti/imagem/doc/NIMA_46128.pdf
 
  
http://electrontube.com.[[Media: rp097mono HV divier.pdf]]
+
[http://books.google.com/books?id=NRXnXmFRjWYC&pg=SA48-PA17&lpg=SA48-PA17&dq=depleted+uranium+coating&source=bl&ots=a6jHsdI6Ec&sig=zVxKGeD4E42gAVkr8Otg9bfpkyg&hl=en&ei=8FgtTIH1HMGC8gbNl-S-Aw&sa=X&oi=book_result&ct=result&resnum=6&ved=0CCoQ6AEwBThG]
  
http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078
+
[http://www.google.com/url?sa=t&source=web&cd=90&ved=0CDYQFjAJOFA&url=http%3A%2F%2Fwww.ga.com%2Fenergy%2Ffiles%2FIFT_Catalog.pdf&ei=RFktTPbgKYL88AbC1tSSAw&usg=AFQjCNE3VbqBWbvcKln4pJVAj8FyKfcOig]
  
http://en.wikipedia.org/wiki/PC_board
+
;IAEA Photonuclear Data Library  [http://www-nds.iaea.org/photonuclear/]
  
http://wikipedia.org
+
;Data Acquisition
  
[http://arxiv.org/abs/0807.2026 A : concise review on THGEM detectors A.Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. M. F. Dos Santos]
+
Warren_logbook[http://wiki.iac.isu.edu/index.php/Warren_Parsons_Log_Book]
  
GEANT4_Paticles_Models[http://geant4.cern.ch/support/proc_mod_catalog/index.shtml]
 
  
Resistors online store : http://www.justradios.com/rescart.html
+
Warren_Thesis [http://wiki.iac.isu.edu/index.php/Warren_Parsons_MS_Thesis]
  
RETGEMs
+
=Related To Gaseous Detectors=
  
[[Media:Jinst8_02_p02012_THGEM_spark.pdf‎]]
+
==Breakdown and Detector Failure  (10/21/10)==
  
[[Media: Nucl_Phys_B_Bidault_ novel UV photon detector.pdf]]
+
;Different kind of micro-pattern detectors
  
[[Media:Mauro micro pattern gaseuos detectors.pdf]]
 
  
[[Media:Development and First Tests of GEM-Like Detectors With Resistive Electrodes.pdf]]
 
  
http://www.supplydivision.co.uk/genitem.htm
 
  
 +
;References
  
http://www.radioshack.com/search/index.jsp?kwCatId=&kw=24%20gauge%20wires&origkw=24%20gauge%20wires&sr=1
+
1- A. Bressan, M. Hocha : NIM A 424 (1999) 321—342 [[File:High_rate_behavior_and_discharge_limits_in micro-pattern_detectors .pdf]]
  
Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[http://wiki.iac.isu.edu/index.php/File:Media-Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors_(HV_circuit).pdf#filelinks]
+
2- Fonte and Peskov IEEE 1999 :[[File:fundamental_limitations_of_high_rate_gaseous_detectors.pdf]]
  
Stainless Steel deflection [http://www.bssa.org.uk/topics.php?article=126]
+
3- B. Schmidt: NIM A 419 (1998) 230—238 [[File:Microstrip_gas_chambers_Recent_developments_radiation_damage.pdf]]
  
 
= Ideas=
 
= Ideas=
Line 2,427: Line 1,099:
 
[[TGEM_Mask_Design]]
 
[[TGEM_Mask_Design]]
  
 +
=P_D=
 +
 +
[[Performance of THGEM as a Neutron Detector]]
 +
 +
[[H_Proposal_Defense]]
 +
 +
=Vendor=
 +
===Thick Film Screen Printers===
  
 +
http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers
  
 +
http://www.marubeni-sunnyvale.com/screen_printing.html
  
 
[http://wiki.iac.isu.edu/index.php/TGEMS Go Back] [[TGEMS]]
 
[http://wiki.iac.isu.edu/index.php/TGEMS Go Back] [[TGEMS]]
 +
 +
 +
===tektronix oscilloscope===
 +
 +
134.50.3.73
 +
 +
 +
http://134.50.203.63/
 +
 +
 +
<references/>

Latest revision as of 03:52, 2 November 2015

HM_2014

2012

2011

2010

2009

Dissertation

11/01/2015

Measurements


File:Measurements 1.pdf File:Measurements 2.pdf File:Measurements 3.pdf


Conclusion

File:Conc.pdf

alpha calibration

Ch alphaE.png


File:Raw data all.pdf


The main peaks are for the following channel numbers,

You need to redo these plots in publication quality with proper axis labels containing units.

Ch alphap1.png Ch alphap2.png

channel Number Energy Upper limit (MeV) Energy lower limit (MeV) average energy (MeV) Notes
4828 4.90 4.79 4.85 +_ 0.02
4869 4.94 4.83 4.88 +_ 0.02

Gamma Spectrum for U-233

Gamma spect.png

Last runs

Run Number start end Time (min) Shutter Source Count rate (counts/min) Notes
9005 05/15 15:00 05/16 10:55 open off 50
9006 05/16 10:57 05/17 22:18 open on 48
9007 05/17 22:23 05/18 19:20 closed on 30
9008 05/18 21:46 05/19 19:59 closed off 30 high beta effect
9010 05/21 23:23 05/22 10:00 closed off 30 high beta effect
9023 05/26 13:06 05/26 13:17 11 open off 87 GEM2.9kV 3.6kV
9024 05/26 13:20 05/26 13:27 7 closed off 26 GEM2.8kV 3.5kV (beta effect decreased)
9032 06/13 12:35 06/13 12:45 10 open off 87 GEM2.8kV 3.5kV (ISU power shutdown)
9033 06/13 12:35 06/13 12:45 10 closed off 26 GEM2.8kV 3.5kV
9034 06/15 20:55 06/15 21:05 10 open off 45 GEM2.8kV 3.5kV
9035 06/15 21:06 06/13 21:16 10 closed off 27 GEM2.8kV 3.5kV
9036 06/17 14:48 06/17 14:58 10 closed off 28 GEM2.8kV 3.5kV
9037 06/17 14:59 06/17 14:09 10 open off 28 GEM2.8kV 3.5kV

The charge spectrum returned to were it was before the neutron exposure after 29 days for closed shutter.

QDC TDC PS-ADC setup

Peak sensing gate

GEM PS gate.png

QDC gate

GEM QDC gate.png


TDC start

TDC pulser.png


TDC STOP

TDC GEM.png

QDC shows a difference

QDC source on off 7724 7726.png

Measurements of the frequently used gas mixture 90/10 Ar/CO2 for the second peak

Changes from the former set up
  1. Using the eG&G timing filter amp. 474 instead of the spectroscopic amp. to amplify the input for the peak sensing ADC.
  2. Gate of a width of 4us has been delyed to track the second peak, as a result part of output spectrum is lost except for the delayed part within the gate width as shown in the figures below:
Lost

PS l1.png

Detected


PS d1.pngPS d2.png


Run Number Date start end Time (min) Shutter Source Count rate (counts/min) Notes
7435 08/24/14 19:30:48 19:55:32 open on 400 a peak is noticed on channel 400
7436 08/24/14 19:59:05 20:40:11 open off 216 the peak disappeared
7438 08/24/14 19:59:05 10:00:00 open on 0.0146 triple coin., high noise, max. is ch 355
7444 08/25/14 21:17:25 21:20:35 open on 230 gate delay 700 ns, peak disappeared Gate delay700ns.png
7446 08/25/14 21:29:51 21:38:55 open off 185 does not count for P_B. peak disappeared


Shutteropen sourceon off.png

unknown gas mixed bottle measurements

Updates

Changing the leading edge disc. to understand the Peak sensing and explain the cut int he peak sensing graph.

Measuring the noise. by starting by low signal rate to distinguish the signal from the noise.

Channels and signals


device ch input source
ADC 5 GEM's trigout
Peak sensing 7 15 GEM's trigout
Peak sensing 5 11 PMT Left
Peak sensing 8 17 PMT right
PS translator
TDC 25 PMT L
TDC 27 GEM's trigout
TDC 29 PMT R
TDC 31 (Stopper) triple coincidence (OR Mode)
CAEN N638
TDC 17 PMT L
TDC B2 18 GEM's trigout multi-hit
TDC B6 22 GEM's B_p
TDC 21 PMT R
TDC 6 30 (pulser) triple coincidence (OR Mode)
TDC 7 23 delayed GEM's trigout


Run Number Date start end Time (min) Shutter Source Count rate (counts/min) Notes
7273 08/06/14 07:10:38 11:41:00 12502 open off 67 0.1 flow rate
7274 08/06/14 11:49:35 18:15:01 23126 closed off 39 0.1 flow rate
7275 08/06/14 20:37:07 09:10:10 closed off 40 0.2 flow rate
7276 08/06/14 09:15:00 09:32:00 open off 80 0.2 flow rate amplification increases from 50 to 100
7277 08/06/14 09:33:08 11:40:42 7654 open off 81 0.2
7295 08/08/14 17:36:58 19:55:59 4741 closed off 60 0.2
7296 08/08/14 22:28:01 23:43:14 closed off 58 0.3
7297 08/08/14 23:48:14 12:08:00 37186 open off 93 0.3
7298 08/09/14 00:16:14 06:08:03 21109 closed off 56 0.3
7299 08/10/14 19:27:12 20:09:04 2152 closed on 107 0.1
7300 08/10/14 20:11:30 20:46:29 2099 open on 136 0.1
7302 08/11/14 06:53:14 07:22:45 1771 closed on 114 0.2
7303 08/11/14 07:26:58 07:48:01 1263 open on 167 0.2
7305 08/11/14 13:21:16 13:55:05 2029 open on 178 0.3
7306 08/11/14 14:41:00 15:40:00 3540 closed on 110 0.3
7307 08/14/14 08:14:15 08:20:39 384 closed off 0.1 noise measurements (pulser only)
7308 08/14/14 08:22:43 08:29:23 open off 1314 0.1 noise measurements (pulser only) same noise level as shutter closed (ch. 86) for Peak sensing ADC
7309 08/14/14 08:35:09 09:45:37 4229 open off 0.1 flow rate was not exact, little less.
7310 08/14/14 09:46:12 11:18:39 5547 open off 54 0.1 flow rate was not exact, little less.
7311 08/14/14 11:19:45 13:01:57 6132 open off 52 0.1 flow rate was not exact, little less.
7312 08/14/14 13:10:50 14:28:07 4637 open off 72 0.1 flow rate was not exact, little less.
7313 08/14/14 14:30:24 15:38: 48 4056 open off 80 0.1 flow rate as is used to be
7314 08/14/14 15:41: 52 16:46:55 3897 open on 147 0.1 flow rate as is used to be
7315 08/14/14 16:49: 59 19:14:30 8729 open on 148 0.1 flow rate as is used to be
7316 08/14/14 19:18:43 22:14:07 10596 open on 147 0.1 flow rate as is used to be
7317 08/14/14 22:18:24 10:18:52 43220 open on 0.0095 0.1 flow rate, triple coincidence
7318 08/15/14 10:24:00 12:42:23 8303 open on 147 0.1 flow rate
7319 08/15/14 12:46:14 15:46:09 10795 open on 148 0.1 flow rate
7323 08/15-16/14 16:59:39 06:03:11 46970 open off 0.0011 0.1 flow rate, triple coincidence
7329 08/16/14 07:06:32 10:35:35 12543 open off 83 0.1 flow rate, PMT's charge is measured for L and R
7330 08/16/14 10:41:58 12:48:33 7595 open on 146 0.1 flow rate
7331 08/16-17/14 12:52:07 06:45:03 64384 open off 0.0016 0.1 flow rate, triple coincidence, coda counted 111 but the data file is empty!
7332 08/17/14 06:52:26 07:04:45 739 open on 1367 0.1 flow rate noise measurements with the wave generator
7333 08/17/14 07:05:50 08:53:54 open on 155 0.1 flow rate
7334 08/17/14 08:57:02 13:13:38 open off 82 0.1 flow rate
7337 08/17/14 14:17:24 14:30:29 open on 1400 0.1 flow rate, GEM 2.92 kV , CATH 3.47kV(+50V), noise measurements with the wave generator
7338 08/17/14 14:31:37 16:17:45 open on 163 0.1 flow rate
7339 08/17/14 16:20:25 16:35:45 open off 1368 0.1 flow rate, noise measurements with the wave generator
7340 08/17/14 16:37:01 20:33:04 open off 95 0.1 flow rate
7341 08/17-18/14 20:40:16 06:18:43 open off 0.0015 0.1 flow rate, triple coincidence
7342 08/18/14 06:25:44 06:37:43 open on 1403 0.1 flow rate, noise measurements
7345 08/18/14 06:39:23 14:17:58 open on 0.0128 0.1 flow rate, triple coincidence
7355 08/18/14 16:03:29 19:59:51 open off 75 0.1 flow rate, EM 2.82 kV , CATH 3.37kV(-50V), CAEN translator is used
7356 08/18/14 20:03:05 20:07:58 open on 2k 0.1 flow rate, noise measurement
7357 08/18/14 20:08:43 22:48:22 open on 142 0.1 flow rate
7358 08/18-19/14 22:53:13 10:52:44 open on 0.0082 0.1 flow rate , triple coincidence
7359 08/19/14 10:55:49 10:59:52 open on 2.1k 0.1 flow rate , noise measurement
7360 08/19/14 11:00:38 14:26:38 open on 156 0.1 flow rate noise measurement with 1 Hz sampling
7361 08/19/14 14:40:49 18:25:00 open on 0 0.1 flow rate with 1 Hz sampling (AND gate)
7362 08/19/14 18:33:15 18:38:54 open on 1.5k 0.1 flow rate triple coinc.(OR)
7363 08/19-20/14 18:39:46 13:39:45 open on 0.0081 0.1 flow rate triple coinc.(OR)
7364 08/20/14 13:44:56 13:50:57 open off 1.55k 0.1 flow rate noise measurements, 2.87, 3.42kV for GEM and CATH
7367 08/20/14 15:08:27 16:49:37 open off 86 0.1 flow rate, 2.87, 3.42kV for GEM and CATH
7368 08/20/14 16:53:42 17:15:49 open on 154 0.1 flow rate
7369 08/20/14 17:17:39 20:28:43 open off 86 0.1 flow rate, spec. amplifier decreased from 100 to 50
7479 08/27/14 10:02:21 10:42:09 open on 64 0.1 flow rate,
7480 08/27/14 10:46:18 14:17:22 open off 11 0.1 flow rate,
7481 08/27/14 14:19:33 14:43:39 close on 78 0.1 flow rate,
7488 08/27/14 16:16:37 16:48:53 open on 86 0.1 flow rate,
7491 08/27/14 18:09:27 18:59:05 open on 86 0.1 flow rate,


Peak sensing measurements by 08/28/14

Peak sensning measurements for GEM were recorded in the time between 8:00 am to 9:44am for shutter open as the following


Source On Source Off
7507 7506
7509 7508
7511 7510
7513 7512
7515 7514
7517 7516
7519 7518
7521 7520


Unknownbootle measurements 06 13.pngUnknownbootle measurements 14 21.png


Different output for each run when Peak sensing is used to measure the charge, what is noticed that the charge is different from one run to another, but all the runs show that the amount of charge collected is bigger when the shutter is open with the source on it except for run 7511. By comparing all the runs, As the shutter is open, the maximum charge is collected by channel number 800, as the source is on the detector, the collected charge reached up to channel 1000 at most.

Measuring the data started by 8 am, the noise rate increased so it increased the event rate from 30s to 80s event/s, and it did not decrease until now (Thur. 15:36 08/28/14). all module wiring were checked but without any result. I am using the 90/10 Ar/CO2 bottle as hope to take some measurements but when the noise level goes down maybe this evening to repeat the same measuremnts.

The following reference shows a change in collected charge as the tenperature changes <ref>"Discrimination of nuclear recoils from alpha particles with superheated liquids" F Aubin et al 2008 New J. Phys. 10 103017 </ref>

Temp signal effect.jpg

Flow rate and figures

03 flow rate

03 sourceOn.png 03 sourceoff.png 03 openOn off sub.png

02 flow rate

02 sourceOn.png 02 sourceoff.png 02 openOn off sub.png

01 flow rate

01 sourceOn.png 01 sourceoff.png

Common Start Common Stop exchange

Edit the file

cd /usr/local/coda/2.5/readoutlist/v1495trigPAT/

as the following:

for common start comment:

/* c775CommonStop(TDC_ID);

for common stop uncomment:

 c775CommonStop(TDC_ID);

Ionization xsections for different particles emitted from U-233

Photons

Photoabosorption Ar.png Photoabosorption CO2.png Photoabosorption Ar CO2.png

Ref. : http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html


Electrons

Electron ion Ar.png

Ref. :

Data Nucl. Data Tables 54 (1993) 75 File:Electron ionization Ar.pdf


Alpha Particles

Alpha ionization.png

Ref. :

http://www.exphys.jku.at/Kshells/

Data Nucl. Data Tables 54 (1993) 75

Coincidence Measurements for GEM and the Plastic scintillator

Coincidence Measurement for the scintillator PMT's without shielding and without source
Date Time No. of Counts (counts) Count rate (counts/min)
07/09/14 1066 659005 618
07/10/14 538 368974 686


Triple coincidence Measurement for the scintillator PMT's shielded and without source

Triple coincidence among the 2 PMT's and the GEM detector is measured using coincidence module caberra 2144 and ortec 778 counter, count rate is 0.3+_ 0.03 Hz. However, the rate was zero before shielding.

The following pics show The GEM output with triple coincidence signal, it is observed that different GEM peaks coincide with the triple signal, which shows that adding the shielding contaminates the neutron signal.


GEM triple smallpeak.png GEM triple bigpeak.png GEM triple twopeaks.png

Coincidence Measurements for the Plastic scintillator after shielding

Without source

The plastic scintillator count rate before shielding and without source was in average 12 +_ 1 Hz, lead is added to the GEM and to the plastic scintillator which did not change the rate of the coincidence for the plastic scintillator . Neither closing the box door with lead nor adding lead to the top of the box did make any change in the number of counts for the plastic scintillator.


With a source

Background count rate

Date Time PSD_e (counts) PSD_e (counts/min) LED (low disctrinimation)(counts) LED (low disctrinimation)(counts/min) LED (high disctrinimation) (counts) LED (high disctrinimation) (counts/min)
07/01/14 1166 56671 49 2936748 2519 10 0.009
07/01/14 231 10529 572657 1542


data graphs

[math]S_{HLE}[/math]


B pdaily counts.png

The above graph represents the change in the count rate of B_p, as the shutter is open (green) and as it is closed (red), the error bars get smaller since each point represents the average of two sets of daily measurements, in addition to, changing the PS discriminator's level after the second measurement.


[math]S_{PSD}[/math]


S pdaily counts.png

The above graph has the same legend as the one for B_p, error bars increase for some data when the shutter is open, since one or more of the daily measurements has a higher number of counts because of U-233(4)'s spentaneous fission. (the number of counts is close to the number of counts as the shutter is open and the source is on).


Small=[math]S_{PSD} - S_{PSDE}[/math]

Testing GEM Experiment test 10/23/13

The GEM detector was tested for signal and discharge as the voltage of the cathode and HV-circuit divider is 3.3 kV and 2.7 kV successively.

The GEM detector signal is observed as it used to work before. the pictures below show the signal detected as the shutter is open and as it is close.


shutter close GEM close 1.png GEM close 2.png
shutter open GEM open 1.png GEM open 2.png GEM open 3.png GEM open 4.png

THGEM#9 Counting Experiment test 1/4/13

THGEM#9 Counting Experiment

GEM HV-divider circuit

GEM HV-divider circuit in shown in the figure, measurements were recorded for for top and bottom voltage of each preamplifier.

GEM HV Dist Net.jpg


The table below shows value of the voltage on each preamplifier's side relative to ground.


[math] V_{source} \pm 1 [/math] [math] V_{G1T} \pm 1 [/math] [math] V_{G1B} \pm 1 [/math] [math] \Delta V_1 \pm 1 [/math] [math] V_{G2T} \pm 1 [/math] [math] V_{G2B} \pm 1 [/math] [math] \Delta V_2 \pm 1[/math] [math] V_{G3T} \pm 1 [/math] [math] V_{G3B} \pm 1 [/math] [math] \Delta V_3 \pm 1 [/math]
2550 2579 2259 304 1671 1394 279 818 570 245
2600 2630 2303 310 1704 1421 285 834 581 250
2650 2680 2348 316 1737 1449 290 850 592 255
2700 2731 2393 322 1770 1476 296 866 603 260
2750 2781 2373 328 1803 1503 302 882 614 264
2800 2832 2482 332 1836 1530 307 898 625 269



The source voltage means the voltage value on the 4-channel CAEN N470 display. (suppose to be equal to the voltage of the top GEM1).

the values are going to be an input for ANSYS which is going to simulate the electric field for each source voltage separately, ANSYS' output files will be an input for Garfield to simulate the electron multiplication by the triple GEM.

GEM alpha-Beta detector counter

GEM Alpha-Beta detector counter

GEM gain data graphs and GEM Calibration in LDS

GEM Detector

GEM performance QDC data graphs

Calibrating GEM detector


Electronics Flow Chart

LDS electronics flow chart.png


GEM Detector and Scintillator

GEM and Sci. data and measuurements

GEM gain data graphs and GEM Calibration at the IAC

Haitham may only alter the QDC's dual timer and a CFD for the QDC in the IAC DAQ.
Haitham may only add signals to the NIM->ECL translator
Haitham is not allowed to change any cables that are used for the PAA setup
Summary

The detector is installed in the IAC after modifications took place in the detector design.

These modifications are:

1- The detector kipton window's area increased to the same size of the GEM cards( 10X10 cm)

2- The distance of the cathode from the first GEM increased up to 1.2 cm. previously the distance was about 3.5 mm. (No change in GEM's distances 2.8mm, or the readout 0.5 mm)

Increasing the drift distance demands an increase in cathode potential to maintain the same values of the electric field in the old setup.

3- The detector is installed in a wooden box, in addition to a plastic scintillator which was placed to cover part of the detector window.


GEM performance data graphs


Electronics Flow Chart

IAC electronics flow chart.png


200px

U-233 fission x-section data and fission yield

U-233 fissionxsection 0.01-100MeV.gif U-233 fissionxsection fullenergyrange.gif

U-233 fissionxyield percent.png


What is the energy distribution of Beta, Photon and alpha from U-233

Alpha

nuclide Energy (MeV)
Pb-213 8.4
Bi-213 5.9
At-217 6.3
Fr-221 6.3
Th-229 4.85 (alpha spectrum, highest counts for is 4.85 MeV)

Gamma

Gamma distribution for U-233 and its daughters are in metioned in details in the documents , File:U233 day gamma.pdf <ref>http://www.radiochemistry.org/periodictable/gamma_spectra , Wed. 04/10/2013</ref>

The energy range of the emitted gamma is shown in the following table .

nuclide Energy Minimum Energy Maximum (keV)
U-233 25 1,119
Ra-225 40 40
Ac-225 10.5 758.9
Fr-221 96.8 410.7
At-217 140 593.1
Bi-213 323.81 1,119.4


Beta

Beta particles are emitted mainly from U-233 daughters as shown in the figure <ref> http://itu.jrc.ec.europa.eu/index.php?id=204, Wed. 04/10/2013 </ref>

U-233 decay beta energy.jpg

U-233 -> Th-229, emitted alpha particles have energy of 4.8 MeV.

Insert energy distribution for Betas

The following table shows the negative beta emitter nuclides,their parent nuclides, and their half lives:


Nuclides energy (MeV) half life
[math]Ra^{225} \rightarrow Ac^{225}[/math] 0.357 14d.
[math]Bi^{213} \rightarrow Po^{213}[/math] 1.426 46min.
[math]Tl^{209} \rightarrow Pb^{209}[/math] 1.981 2.2 min.
[math]Pb^{209} \rightarrow Bi^{209}[/math] 0.644 3.25h
[math]Bi^{209}[/math] 1.893 stable

What is the energy distribution after the 1 mm FR4 shutter

electron shutter penetration

The energy distribution below represents the incidence electron on a 1 mm FR4 shutter.

E spectrum.png

graph of electron energy for electron penetrating shutter (did any not penetrate?, how many?)



photons below were produced by above incident electron?

The energy distribution of photons was observed on the opposite side of the shutter

Photon spectrum.png


Electrons (with least energy from U-233= 0.2 MeV) pass through the shutter have the energy distribution below.

alpha shutter penetration

photons

Number of ions produced from Beta and Photon in ArCo2

EMTest10 is used to calculate the average number of ions (electrons) when a 101 beta of 1 MeV are fired in a world that contains ArCO2. (13.5 per primary electron).


SecondaryElectron Energy 1Mevbeta.png

The needed time to observe the GEM signal

In the case of triple GEM detector with a gas flow of 0.3 SCFH and 2650V and 2950V on GEM cards and cathode successively, a signal lower than the noise (of 16 mV and amplified twice) is observed at 770.0s +/- 0.1.

The normal rate (8 MHz +/- 2 as measured by the oscilloscope) is observed after 952.9s +/- 0.1.

THGEM card tasks and tests

New THGEM cards

Two new fully machined cards are going to be tested in air and ArCH4, if they passes 2000 V potential bwtween the top and the bottom, then they are going to be installed in ArCh4 gas chamber.

The older THGEM cards will have a high voltage enough to have one spark/min to clean impurities or surface defects.

GEM Signal after the latest modification on the fission chamber 07/01/13

The signal of the detector is observed as the shutter is open and close.

shutter close GEM close.jpg GEM close1.jpg GEM close2.jpg GEM open.jpg
shutter open GEM open 7 1.jpg


GEM's signal testing when it a long cable is used

The GEM signal is tested when a long cable is used to transfer the signal to the oscilloscope as the shutter is open, and without the cable. Oscilloscope pictures shows an attenuation to the signal up to 30%.


Long bnc cable GEM longcable1.jpg GEM longcable2.jpg
Short bnc cable GEM shortcable.jpg


Roy's detector infomation and measurements

U-233 metal deposited source is measured by Protean Instrument corporation gaseous detector, has a model number of WPC9450 (serial number: 0915723)and uses (P10) gas mixture, as shown below:

Shutter position Alpha particles /min. Beta particles /min.
Open 6879 900
Close 1 38

The source was in a plate of a diameter of 16 cm which was exposed to to the sensitive part of the detector of a height of 2-3 mm.

The activity of the source is calculated based on the solid angle [math] \frac {A \times W}{4\pi} [/math]

where A is the count per second and W is the detector solid angle.

For the previous measurement, the solid angle is almost [math]2\pi [/math], so the the actvity of the source is twice the measured value in count/second.


IAC experiment producing neutrons

One of the IAC experiments produces neutrons, the neutron spectrum from Tungsten target is simulated outside and inside water (moderator) as shown in the figure below

Moderator nspect.png

In the simulation above , They are interested in close distances to the Tungsten target inside the water container, it is 1 ft cubed container and is made of aluminium and covered polyester.

Exp setup.png

References

THGEM design

THGEM#9

Media:Shalem_MSthesis_march2005.pdf


Media:Raz_Alon_MSthesis_Dec2007.pdf

Electric field Simulation

Rim size dependence

File:THGEM Efield simulation.pdf


2010 THGEM design(s)

File:THGEM 2009 design gas efficiency.pdf


Simulations_of_Particle_Interactions_with_Matter

Voss and 3 russian references for Dy(n,x) cross sections


http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum


http://www.ippe.obninsk.ru/podr/cjd/kobra13.php?SubentID=30974002

http://www.americanelements.com/thoxst.html

http://arxiv.org/pdf/physics/0404119

NIM_A535_2004_93[1]


File:NIM A590 2008 pg134 Eberhardt.pdf Prep Targets

Neutron cross sections for different elements Media:Neutron_cross_sections.pdf

http://www-nds.iaea.org/RIPL-2/

Media:n gamma cross sections at 25 keV.jpg

Media:n alpha cross section at 14.2 MeV.jpg

Media:ne cross section at 14 MeV.jpg

Media:high enegy fission x-section.jpg

Media:N_gamma_x-section_at_400_keV.jpg

Media:x-sections of reactions at 14 MeV.jpg

Media:n p x-section at 14.3MeV.jpg

Media: n gamma x-section at 14.5 MeV.jpg

Media: elastic x-section at 0.5 MeV.jpg

Media: n gamma x-section at 1 MeV.jpg

Media: n 2n x-section at 14.3 MeV.jpg

Donald James Hughes, Neutron cross sections, 2nd edition 1958, u.s.a atomic energy commission.Media:Neutron cross sections.pdf

File:NSAE 151 2005 319-334 Y.D. Lee.pdf

TGEM-2009 File:TGEM 2009.pdf

12 Volt power supply system.

http://www.lnf.infn.it/esperimenti/imagem/doc/NIMA_46128.pdf

http://electrontube.com.Media: rp097mono HV divier.pdf

http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078

http://en.wikipedia.org/wiki/PC_board

http://wikipedia.org

A : concise review on THGEM detectors A.Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. M. F. Dos Santos

GEANT4_Paticles_Models[2]

Resistors online store : http://www.justradios.com/rescart.html

RETGEMs

Media:Jinst8_02_p02012_THGEM_spark.pdf‎


Media:2010_INST_5_P03002.pdf‎

Thick GEM COBRA

Media:THGEM_COBRA_08_10.pdf‎


Media: Nucl_Phys_B_Bidault_ novel UV photon detector.pdf

Media:Mauro micro pattern gaseuos detectors.pdf

Media:Development and First Tests of GEM-Like Detectors With Resistive Electrodes.pdf

http://www.supplydivision.co.uk/genitem.htm


http://www.radioshack.com/search/index.jsp?kwCatId=&kw=24%20gauge%20wires&origkw=24%20gauge%20wires&sr=1

Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[3]

Stainless Steel deflection [4]

Data Sheets

radioactive surface cleaner NoCount MDSD File:Radioactive surface cleaner.pdf.

Th-Xsection references

File:Th-232 fxsection Behrens 0.7-1.4MeV.pdf

File:Th-232 fxsection Blons 1975 1.2-1.8MeV.pdf

File:Th-232 fxsection ermagambetov 0-3MeV.pdf

File:Th-232 fxsection Henkel 0-9MeV.pdf

File:Th-232 fxsection Ohsawa original.pdf

File:Th-232 fxsection pankratov 3-35MeV.pdf

File:Th-232 fxsection protopopov distancefromthesource.pdf

File:Th-232 fxsection rago 12.5-18MeV.pdf

U-238-Xsection and coating references

relative cross section and calibration samples characteristics for a well determined number of fissions per second

File:Eismont relative absolute nf induced intermediate energy.pdf


U_238 cross section error analysis

INTERNATIONAL EVALUATION OF NEUTRON CROSS-SECTION STANDARDS, INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 2007 File:U238-xsection.pdf

U_238 (0.5-4MeV) and Th_232 (1-6MeV) fission cross section with statistical error.File:Th-232 U238 xsetion data ebars.txt


File:Pankratov fxsection Th232 U233 U235 Np237 U238 5-37MeV.pdf


Thorium Coating

ThF4 target for sputtering coatings

http://www.cerac.com/pubs/proddata/thf4.htm

Machining Uranium

Uranium will ignite in powder form


http://www.springerlink.com/content/rr072r52163x0833/

coating Uranium


[[5]]

http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172

Calorimeters/Detectors: DU sheet is in wide-scale use as an absorber material in high-energy physics research at large accelerator laboratories. The high atomic number and density of DU presents a large number of atoms per unit volume to interact with the particles emerging from collisions in these detectors. Also the slight background radiation from DU enables in situ calibration of the electronic read out devices within such detectors, thereby improving the accuracy of measurement.

http://www.2spi.com/catalog/chem/depleted-uranium-products.html


[6]

[7]

IAEA Photonuclear Data Library [8]
Data Acquisition

Warren_logbook[9]


Warren_Thesis [10]

Related To Gaseous Detectors

Breakdown and Detector Failure (10/21/10)

Different kind of micro-pattern detectors



References

1- A. Bressan, M. Hocha : NIM A 424 (1999) 321—342 File:High rate behavior and discharge limits in micro-pattern detectors .pdf

2- Fonte and Peskov IEEE 1999 :File:Fundamental limitations of high rate gaseous detectors.pdf

3- B. Schmidt: NIM A 419 (1998) 230—238 File:Microstrip gas chambers Recent developments radiation damage.pdf

Ideas

1.) Can we mix resistive paste (Encre MINICO) with TH-232. We construct a "bed of nails" to place a predrilled G-10 board with a copper border. The nails fill in the holes of the G-10 to keep the paste out. Ecre MINICO is a resistive paste used for transistors.

a.) Get some resistive paste.


http://www.leggesystems.com/p-253-elimstat-uxm-ccp.aspx

Resistive glue to compare

File:Duralco 4461.pdf


http://www.ellsworth.com/conformal.html?tab=Products

http://www.ellsworth.com/display/productdetail.html?productid=764&Tab=Products


http://www.ellsworth.com/display/productdetail.html?productid=2067&Tab=Products

http://www.cotronics.com/vo/cotr/ea_electricalresistant.htm


b.) mix with a metal similar to Th-232.

c.) construct bed of 0.4 mm nails. Look for 0.4 mm diameter pins.

7/31/2009

New vendor for carbon paste.

http://www.electrapolymers.com/productItem.asp?id=33

The data sheet does not show any information about the thickness of the paste.

The company has a distributor in the usa (877)-867-9668. A phone call is expected on Sat. 8/3/2009 about the availability of the product.

TGEM Mask Design

Coating U-238 or Th-232 is essential for neutron detection in the range 2-14 MeV, but THGEM contains holes that should be protected from any coating material. So, a mask is designed to cover these holes. The holes are in drilled to be on the corners of hexagonal of 1mm side length as in the figure:

Hexagonal representaion holes 04mm 1mmc2c.jpg


The mask is made of stainless steel, 10 um laser tolerance with cut the plate to get the shape in the figure:

Holes covered by mask.jpeg

Please look at the following files for more details:

Make number bold black font. Add color so it is clear that they are holes in a material.

File:Copper foil 04mm.pdf

File:Holes mask together.pdf


TGEM_Mask_Design

P_D

Performance of THGEM as a Neutron Detector

H_Proposal_Defense

Vendor

Thick Film Screen Printers

http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers

http://www.marubeni-sunnyvale.com/screen_printing.html

Go Back TGEMS


tektronix oscilloscope

134.50.3.73


http://134.50.203.63/


<references/>