Difference between revisions of "Test in Plane for Theta at 20 degrees and Phi at 0"

From New IAC Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[In_the_Detector_Plane|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
+
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
  
  
==Test for <math>\theta=20</math> and <math>\phi=0</math>==
+
=Test for <math>\theta=20</math> and <math>\phi=0</math>=
  
 
Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math>
 
Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math>
Line 56: Line 56:
  
  
=[[VanWasshenova_Thesis#Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_0|^Up]]=
+
----
  
=[[In_the_Detector_Plane|<-Back]]=
 
  
=[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|Forward->]]=
+
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[In_the_Detector_Plane|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleright </math>]]
 +
 
 +
</center>

Latest revision as of 20:28, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Test for [math]\theta=20[/math] and [math]\phi=0[/math]

Substituting in the values found earlier for the case of [math]\theta=20^{\circ}[/math] and [math]\phi=0[/math]


[math]a=\frac{a_1+a_2}{2}=1.0459[/math]



[math]e\equiv \frac{sin(25^{\circ})}{cos(\theta)}= \frac{sin(25^{\circ})}{cos(20^{\circ})}=.4497[/math]


[math]x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{r_2^{'2}-r_1^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)[/math]



Since

[math]\lVert \overrightarrow{D1P} \rVert \equiv \lVert \overrightarrow{F1P} \rVert \qquad \qquad \lVert \overrightarrow{D2P} \rVert \equiv \lVert \overrightarrow{F2P} \rVert[/math]


[math]D1P \approx .576\ \text{m}\qquad D2P \approx 1.516\ \text{m}[/math]

The [math]x_1^' [/math] distance from focal point 1 is:

[math]x_1^'=\frac{1.516^2-.576^2}{4(1.0459)(.4497)}-(1.0459)(.4497)=\frac{1.97}{1.88}-.4703=.576\ \text{m}=r_1[/math]

This is the radius from focal point 1, which is to be expected since the y component is equal to zero for [math]\phi=0[/math]


The focii are located at

[math]F1\equiv (-\Delta a+ae,0)=(-.1775+1.0459(.4497),0)=(.292,0)\ \text{m}\qquad F2\equiv (-\Delta a-ae,0)=(-.1775-1.0450(.4497),0)=(-6.478,0)\ \text{m}[/math]


This implies that with respect to the origin, x', we find

[math]x'=x_1'+\Delta a+ae=.576+.292=.868\ \text{m}[/math]

This is verified with CED

X in detector plane.png

Since the x' dimension is the hypotenuse in a right triangle of 65 degrees


[math]x'=\frac{x_{lab}}{sin 65^{ \circ}}=.868=x'[/math]




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]