Difference between revisions of "Test in Plane for Theta at 20 degrees and Phi at 0"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "==Test for <math>\theta=20</math> and <math>\phi=0</math>== Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math> <ce…")
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Test for <math>\theta=20</math> and <math>\phi=0</math>==
+
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[In_the_Detector_Plane|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleright </math>]]
 +
 
 +
</center>
 +
 
 +
 
 +
=Test for <math>\theta=20</math> and <math>\phi=0</math>=
  
 
Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math>
 
Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math>
Line 45: Line 54:
  
 
<center><math>x'=\frac{x_{lab}}{sin 65^{ \circ}}=.868=x'</math></center>
 
<center><math>x'=\frac{x_{lab}}{sin 65^{ \circ}}=.868=x'</math></center>
 +
 +
 +
----
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[In_the_Detector_Plane|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 20:28, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Test for [math]\theta=20[/math] and [math]\phi=0[/math]

Substituting in the values found earlier for the case of [math]\theta=20^{\circ}[/math] and [math]\phi=0[/math]


[math]a=\frac{a_1+a_2}{2}=1.0459[/math]



[math]e\equiv \frac{sin(25^{\circ})}{cos(\theta)}= \frac{sin(25^{\circ})}{cos(20^{\circ})}=.4497[/math]


[math]x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{r_2^{'2}-r_1^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)[/math]



Since

[math]\lVert \overrightarrow{D1P} \rVert \equiv \lVert \overrightarrow{F1P} \rVert \qquad \qquad \lVert \overrightarrow{D2P} \rVert \equiv \lVert \overrightarrow{F2P} \rVert[/math]


[math]D1P \approx .576\ \text{m}\qquad D2P \approx 1.516\ \text{m}[/math]

The [math]x_1^' [/math] distance from focal point 1 is:

[math]x_1^'=\frac{1.516^2-.576^2}{4(1.0459)(.4497)}-(1.0459)(.4497)=\frac{1.97}{1.88}-.4703=.576\ \text{m}=r_1[/math]

This is the radius from focal point 1, which is to be expected since the y component is equal to zero for [math]\phi=0[/math]


The focii are located at

[math]F1\equiv (-\Delta a+ae,0)=(-.1775+1.0459(.4497),0)=(.292,0)\ \text{m}\qquad F2\equiv (-\Delta a-ae,0)=(-.1775-1.0450(.4497),0)=(-6.478,0)\ \text{m}[/math]


This implies that with respect to the origin, x', we find

[math]x'=x_1'+\Delta a+ae=.576+.292=.868\ \text{m}[/math]

This is verified with CED

X in detector plane.png

Since the x' dimension is the hypotenuse in a right triangle of 65 degrees


[math]x'=\frac{x_{lab}}{sin 65^{ \circ}}=.868=x'[/math]




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]