Difference between revisions of "Neutron TGEM Detector Abdel"

From New IAC Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
[[File:GEM_2003_AnsysE-field.png | 200 px]]
 
[[File:GEM_2003_AnsysE-field.png | 200 px]]
 
[[File:AnimGEM_2003_AnsysE-field.gif | 200 px]]
 
[[File:AnimGEM_2003_AnsysE-field.gif | 200 px]]
 +
 +
 +
==Garfield simulation for GEM foils==
 +
 +
;Single GEM
 +
 +
Garfield simulates a single GEM that has the standard structure
 +
 +
pitch =  0.14  ! Distance between holes, in mm
 +
kapton = 0.050  ! Thickness of the kapton layer, in mm
 +
metal =  0.005  ! Thickness of the meta layers, in mm
 +
r_o = 0.050  ! Hole outer diameter, in mm
 +
r_i = 0.070  ! Hole diameter in the centre, in mm
  
 
=Summary Sorma 2012=
 
=Summary Sorma 2012=

Revision as of 18:58, 31 May 2012

2009

2010

2011

Garfield

Garfield

Electric Field distribution

THGEM rim0.2.png THGEM Efield 0.5hole 0.2rim.png THGEM Efield 0.5in 0.8out 0.2rim.png

The figures represent the simulation of the electric field by using 1/4 hole in THGEM card that is made of FR4 and covered with resistive paste.

The figures represent in order : the THGEM hole model design, electric field simulation of the recent THGEM hole model that has a diameter 0.5mm and 0.9mm rim diameter(we are testing in the lab now), and the last figure represents the THGEM hole simulation after changing the hole's inside shape from the cylindrical shape to cone shape for the top and the bottom part of the hole (so it looks like the hour clock or sand clock shape). The new change in shape will change the E-field strength around and inside the hole to higher values, also it changes the electric field lines distribution outside the hole. The new simulated hole model consists of two cones that have the 0.5 diameter area in contact, each has a an inner diameter of 0.5mm and an outer diameter is 0.8mm, the rim still has 0.9mm diameter without any change.


GEM 2003 AnsysE-field.png AnimGEM 2003 AnsysE-field.gif


Garfield simulation for GEM foils

Single GEM

Garfield simulates a single GEM that has the standard structure

pitch = 0.14 ! Distance between holes, in mm kapton = 0.050 ! Thickness of the kapton layer, in mm metal = 0.005 ! Thickness of the meta layers, in mm r_o = 0.050 ! Hole outer diameter, in mm r_i = 0.070 ! Hole diameter in the centre, in mm

Summary Sorma 2012

Due to the demand on robust, economical, large active area compatible and gamma discriminating detectors, we started our work to build then measure the efficiency of Thick Gaseous Electron Multiplier Preamplifiers (THGEM) as a Neutron Sensitive Detector in the range of 1-14 MeV. The THGEM is constructed using an FR4 substrate that has been coated with a resistive paste or a thin layer of copper. A staggered array of millimeter size holes are machined in the THGEM. The resistive paste is removed from the perimeter of the holes in order to reduce the spark discharge probability. By doping the resistive paste with a neutron sensitive material A determination of the neutron sensitive material type and optimal doping strategy to produces a high detection efficiency.

ACNS 2012

A neutron detector is being constructed that uses Thick Gaseous Electron Multiplier preamplifiers (THGEM) and a thin film of a fissionable material. The THGEM is constructed using an FR4 substrate that has been coated with a resistive paste to reduce disharge events uncorrelated with an incident neutron. A staggered array of millimeter size holes are machined in the THGEM. The detector includes a segmented charge collector which is used to determine the potisiton of the neutron as it enters the detector's acceptance. The detector's efficiency for neutrons having energies between 1 and 14 MeV will be quantified using an accelerator based neutron source.


The Gaol in participating in ACNS school

Being a neutron detector research student, I am always interested in all neutron science developments and applications. A recent goal of my work is developing a fast response neutron detector using THGEM (thick gaseous electron multiplier) preamplifier, and neutron imaging using segmented charge collector technology. Such a combination between two technologies requires a knowledge of the latest neutron detectors' uses and of other instrumentation used in experiments. Participating in your school is a step to gain experience in this field, and offers a golden opportunity to communicate with specialists and scientists who have remarkable achievements in this field.

ISU research symposium

http://www.isu.edu/bulletinboard/student/xcall-03_19_2012_so.html

Due to the demand on robust, economical, large active area and gamma discriminating detectors, we started our work to build then measure the efficiency of Thick Gaseous Electron Multiplier Preamplifier (THGEM) as a Neutron Sensitive Detector in the range of 1-14 MeV. The THGEM is constructed using an FR4 substrate that has been coated with a resistive paste or a thin layer of copper. A staggered array of millimeter size holes are machined in the THGEM. The resistive paste is removed from the perimeter of the holes in order to reduce the spark discharge probability. Basically , the incident particle causes an ionization within the active area, most of the free electrons will drift through the holes by the the electric field causing an electron multiplication. The project THGEM model has a hole diameter of 0.5mm and rim size of 0.2mm, which allows the voltage between the top and bottom side of the Preamplifier to go up to 2kV. We are expecting a gain of 105 electron when a gas chamber filled 90/10% Ar/CO2 gas mixture has four THGEM Preamplifiers, each has a voltage close to 2kV. By doping the resistive paste with a neutron sensitive material A determination of the neutron sensitive material type and optimal doping strategy to produce a high detection efficiency.

File:Form.doc

THGEM test 2/15/12

Four THGEM Card Model were tested and the pulses below were observed.

The distances in of : Cathode is 11.5mm, THGEM card distance is 4.6mm, readout distance : 6.9mm

Nothing is observed on the readout card!


ATHGEM copper trigout HV7.7k 2 15 12.png

3/28/12

  1. Conical copper THGEM cards are in the machine shop and may be done by next week
  2. 5 resistive paste cards are in the LDS
  3. Succeeded to run Garfield example GEM.C (error message: couldn't reach a Garfield text file)


To Do:

  1. Tomorrow install 4 THGEM cards into test chamber with advisor
  2. Document Garfield results from GEM.C

U-238 fission cross section in EPS format for Dr. Forest

File:ENDF GEAN4 U238 fxsection.eps


5/11/12 3-THGEM copper card detector testing results

  • There was not any signal observed from the detector for cosmic rays or for the gamma source, the maximum voltage applied on each card (top and bottom) was 1.7 kV, and the trasmission voltage was 0.9 kV (between the cards), the distance between the cards was 2.3 mm, the same distance used to separate the cathode from the first THGEM card.


  • Strong sparking was observed when the applied voltage on the cards was equal or more than 1.8 kV (as the THGEM cards and the cathode were placed with the same distances mentioned before), the sparking wass not in the holes area but on the other areas around the holes on the surface of the THGEM card. The spark was strong enough to damage a 1kV rated capacitor (for the fifth time by today morning), to damage a 50 ohm terminator (0.5 W), and to cause an offset on the scilloscope channel if it was connected. (it is not recommended to connect the oscilloscope over night with the detector even if the voltage is 1.7 kV!)
  • The cathode distance varied from 6.9 to 2.3 mm, but the changing the distance did not forbid creating the sparks in the holes area (for the largest seperation distance), or around the holes (for the smallest one).
  • The next step (if you agree) is to reproduce the results of the published paper for using the THGEM copper cards to build an alpha detector, simultaneously I repeat the testing steps using 3 resistive paste card detector in the old gas chamber, then compare the results with the THGEM copper cards' results .

References

Electric field Simulation

Rim size dependence

File:THGEM Efield simulation.pdf


2010 THGEM design(s)

File:THGEM 2009 design gas efficiency.pdf


Simulations_of_Particle_Interactions_with_Matter

Voss and 3 russian references for Dy(n,x) cross sections

Media:Shalem_MSthesis_march2005.pdf

http://arxiv.org/abs/0903.3819 Dy photon gammas spectrum


http://www.ippe.obninsk.ru/podr/cjd/kobra13.php?SubentID=30974002

http://www.americanelements.com/thoxst.html

http://arxiv.org/pdf/physics/0404119

NIM_A535_2004_93[1]


File:NIM A590 2008 pg134 Eberhardt.pdf Prep Targets

Neutron cross sections for different elements Media:Neutron_cross_sections.pdf

http://www-nds.iaea.org/RIPL-2/

Media:n gamma cross sections at 25 keV.jpg

Media:n alpha cross section at 14.2 MeV.jpg

Media:ne cross section at 14 MeV.jpg

Media:high enegy fission x-section.jpg

Media:N_gamma_x-section_at_400_keV.jpg

Media:x-sections of reactions at 14 MeV.jpg

Media:n p x-section at 14.3MeV.jpg

Media: n gamma x-section at 14.5 MeV.jpg

Media: elastic x-section at 0.5 MeV.jpg

Media: n gamma x-section at 1 MeV.jpg

Media: n 2n x-section at 14.3 MeV.jpg

Donald James Hughes, Neutron cross sections, 2nd edition 1958, u.s.a atomic energy commission.Media:Neutron cross sections.pdf

File:NSAE 151 2005 319-334 Y.D. Lee.pdf

TGEM-2009 File:TGEM 2009.pdf

12 Volt power supply system.

http://www.lnf.infn.it/esperimenti/imagem/doc/NIMA_46128.pdf

http://electrontube.com.Media: rp097mono HV divier.pdf

http://www.cerac.com/pubs/proddata/thf4.htm#anchor550078

http://en.wikipedia.org/wiki/PC_board

http://wikipedia.org

A : concise review on THGEM detectors A.Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. M. F. Dos Santos

GEANT4_Paticles_Models[2]

Resistors online store : http://www.justradios.com/rescart.html

RETGEMs

Media:Jinst8_02_p02012_THGEM_spark.pdf‎


Media:2010_INST_5_P03002.pdf‎

Thick GEM COBRA

Media:THGEM_COBRA_08_10.pdf‎


Media: Nucl_Phys_B_Bidault_ novel UV photon detector.pdf

Media:Mauro micro pattern gaseuos detectors.pdf

Media:Development and First Tests of GEM-Like Detectors With Resistive Electrodes.pdf

http://www.supplydivision.co.uk/genitem.htm


http://www.radioshack.com/search/index.jsp?kwCatId=&kw=24%20gauge%20wires&origkw=24%20gauge%20wires&sr=1

Thick_GEM_versus_thin_GEM_in_two_phase_argon_avalanche_detectors (HV circuit)[3]

Stainless Steel deflection [4]

Data Sheets

radioactive surface cleaner NoCount MDSD File:Radioactive surface cleaner.pdf.

Th-Xsection references

File:Th-232 fxsection Behrens 0.7-1.4MeV.pdf

File:Th-232 fxsection Blons 1975 1.2-1.8MeV.pdf

File:Th-232 fxsection ermagambetov 0-3MeV.pdf

File:Th-232 fxsection Henkel 0-9MeV.pdf

File:Th-232 fxsection Ohsawa original.pdf

File:Th-232 fxsection pankratov 3-35MeV.pdf

File:Th-232 fxsection protopopov distancefromthesource.pdf

File:Th-232 fxsection rago 12.5-18MeV.pdf

U-238-Xsection and coating references

relative cross section and calibration samples characteristics for a well determined number of fissions per second

File:Eismont relative absolute nf induced intermediate energy.pdf


U_238 cross section error analysis

INTERNATIONAL EVALUATION OF NEUTRON CROSS-SECTION STANDARDS, INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 2007 File:U238-xsection.pdf

U_238 (0.5-4MeV) and Th_232 (1-6MeV) fission cross section with statistical error.File:Th-232 U238 xsetion data ebars.txt


File:Pankratov fxsection Th232 U233 U235 Np237 U238 5-37MeV.pdf


Thorium Coating

ThF4 target for sputtering coatings

http://www.cerac.com/pubs/proddata/thf4.htm

Machining Uranium

Uranium will ignite in powder form


http://www.springerlink.com/content/rr072r52163x0833/

coating Uranium


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVV-46G57SW-53&_user=10&_coverDate=10%2F01%2F1991&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1388383717&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3229e061695dfa28617f9f5db1ef55d

http://cat.inist.fr/?aModele=afficheN&cpsidt=16864172

Calorimeters/Detectors: DU sheet is in wide-scale use as an absorber material in high-energy physics research at large accelerator laboratories. The high atomic number and density of DU presents a large number of atoms per unit volume to interact with the particles emerging from collisions in these detectors. Also the slight background radiation from DU enables in situ calibration of the electronic read out devices within such detectors, thereby improving the accuracy of measurement.

http://www.2spi.com/catalog/chem/depleted-uranium-products.html


http://books.google.com/books?id=NRXnXmFRjWYC&pg=SA48-PA17&lpg=SA48-PA17&dq=depleted+uranium+coating&source=bl&ots=a6jHsdI6Ec&sig=zVxKGeD4E42gAVkr8Otg9bfpkyg&hl=en&ei=8FgtTIH1HMGC8gbNl-S-Aw&sa=X&oi=book_result&ct=result&resnum=6&ved=0CCoQ6AEwBThG

http://www.google.com/url?sa=t&source=web&cd=90&ved=0CDYQFjAJOFA&url=http%3A%2F%2Fwww.ga.com%2Fenergy%2Ffiles%2FIFT_Catalog.pdf&ei=RFktTPbgKYL88AbC1tSSAw&usg=AFQjCNE3VbqBWbvcKln4pJVAj8FyKfcOig


IAEA Photonuclear Data Library [5]
Data Acquisition

Warren_logbook[6]


Warren_Thesis [7]

Related To Gaseous Detectors

Breakdown and Detector Failure (10/21/10)

Different kind of micro-pattern detectors



References

1- A. Bressan, M. Hocha : NIM A 424 (1999) 321—342 File:High rate behavior and discharge limits in micro-pattern detectors .pdf

2- Fonte and Peskov IEEE 1999 :File:Fundamental limitations of high rate gaseous detectors.pdf

3- B. Schmidt: NIM A 419 (1998) 230—238 File:Microstrip gas chambers Recent developments radiation damage.pdf

Ideas

1.) Can we mix resistive paste (Encre MINICO) with TH-232. We construct a "bed of nails" to place a predrilled G-10 board with a copper border. The nails fill in the holes of the G-10 to keep the paste out. Ecre MINICO is a resistive paste used for transistors.

a.) Get some resistive paste.


http://www.leggesystems.com/p-253-elimstat-uxm-ccp.aspx

Resistive glue to compare

File:Duralco 4461.pdf


http://www.ellsworth.com/conformal.html?tab=Products

http://www.ellsworth.com/display/productdetail.html?productid=764&Tab=Products


http://www.ellsworth.com/display/productdetail.html?productid=2067&Tab=Products

http://www.cotronics.com/vo/cotr/ea_electricalresistant.htm


b.) mix with a metal similar to Th-232.

c.) construct bed of 0.4 mm nails. Look for 0.4 mm diameter pins.

7/31/2009

New vendor for carbon paste.

http://www.electrapolymers.com/productItem.asp?id=33

The data sheet does not show any information about the thickness of the paste.

The company has a distributor in the usa (877)-867-9668. A phone call is expected on Sat. 8/3/2009 about the availability of the product.

TGEM Mask Design

Coating U-238 or Th-232 is essential for neutron detection in the range 2-14 MeV, but THGEM contains holes that should be protected from any coating material. So, a mask is designed to cover these holes. The holes are in drilled to be on the corners of hexagonal of 1mm side length as in the figure:

Hexagonal representaion holes 04mm 1mmc2c.jpg


The mask is made of stainless steel, 10 um laser tolerance with cut the plate to get the shape in the figure:

Holes covered by mask.jpeg

Please look at the following files for more details:

Make number bold black font. Add color so it is clear that they are holes in a material.

File:Copper foil 04mm.pdf

File:Holes mask together.pdf


TGEM_Mask_Design

P_D

Performance of THGEM as a Neutron Detector

H_Proposal_Defense

Vendor

Thick Film Screen Printers

http://www.sciquip.com/browses/browse_Cat.asp?Category=Screen+Printers

http://www.marubeni-sunnyvale.com/screen_printing.html

Go Back TGEMS


tektronix oscilloscope

134.50.3.73


http://134.50.203.63/