Difference between revisions of "DV RunGroupC Moller"

From New IAC Wiki
Jump to navigation Jump to search
 
(117 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
Simulating the Moller scattering background for EG12
 
Simulating the Moller scattering background for EG12
 +
=Docker=
 +
==[[Set up Docker Container]]==
 +
=[[DV_XSECT|Moller Differential Cross-Section]]=
  
 
=GEANT4 Simulation of Moller Events=
 
=GEANT4 Simulation of Moller Events=
  
==Simulation Setup==
+
== [[LH2 target|Simulation Setup]]==
Determine the Moller background using an [[LH2 target]] to check the physics in GEANT4
+
Use GEANT4 via GEMC to estimate the Moller background for electron scattering experiments in JLab's Hall B.  The first step towards this goal is to use GEANT4 without the GEMC infrastructure to create event (LUND) files that will be used as input events for GEMC.
  
==Distributions For LH2==
+
==[[DV_Moller_LH2 | Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using LH2]]==
  
===[[LH2 Momentum Lab|LH2 Momentum Distribution in the Lab Frame]]===
 
  
===[[LH2 Angular Distribution in the Lab Frame]]===
 
  
===[[LH2 Momentum distribution in the Center of Mass Frame|LH2 Momentum Distribution in the Center of Mass Frame]]===
+
===Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging LH2===
 
 
===[[LH2 Angular Distribution in the Center of Mass Frame]]===
 
 
 
==Comparing experimental vs. theoretical for Møller differential cross section 11GeV==
 
  
 
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
 
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
Line 27: Line 24:
 
[[Replacing the LH2 target with an NH3 target]]
 
[[Replacing the LH2 target with an NH3 target]]
  
==Distributions for NH3==
+
==[[DV_Moller_NH3|Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using NH3]]==
===[[NH3 Momentum Distribution in the Lab Frame]]===
 
  
===[[NH3 Angular Distribution in the Lab Frame]]===
+
==Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging NH3==
  
===[[NH3 Momentum Distribution in the Center of Mass Frame]]===
+
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
  
===[[NH3 Angular Distribution in the Center of Mass Frame]]===
+
[[File:XSect_NH3.png|frame|center|alt=Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame|'''Figure 5c:''' The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.]]
  
 
==LH2 Vs. NH3==
 
==LH2 Vs. NH3==
 +
===[[DV_Moller_NH3_LH2|Benchmark GEANT4's Moller scattering prediction for NH3 and LH2]]===
  
===[[Comparing Momentum Distribution in the Lab Frame]]===
 
 
===[[Comparing Angular Distribution in the Lab Frame]]===
 
 
===[[Comparing Momentum Distribution in the Center of Mass Frame]]===
 
 
===[[Comparing Angular Distribution in the Center of Mass Frame]]===
 
  
 
==Effects Due to Target Material==
 
==Effects Due to Target Material==
Line 54: Line 44:
 
==[[Calculating the differential cross-sections for the different materials, and placing them as well as the theoretical differential cross-section into a plot:|Differential Cross-Section Offset]]==
 
==[[Calculating the differential cross-sections for the different materials, and placing them as well as the theoretical differential cross-section into a plot:|Differential Cross-Section Offset]]==
  
=Reconstruction of Moller Events=
+
[[File:Adjusted_MollerXSect_NH3.png‎|frame|center|alt=Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame|'''Figure 5c:''' The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.  The theoretical differential cross-section has been adjusted to account for the 10 electrons within NH3.]]
 +
 
 +
[[ROOT Macro to read LUND files and make plots]]
 +
 
 +
 
 +
<center>[[File:LUND_MolMomCM.png]][[File:LUND_MolThetaCM.png]]</center>
 +
 
 +
 
 +
<center>[[File:LUND_MolMomLab.png]][[File:LUND_MolThetaLab.png]]</center>
 +
 
 +
 
 +
Run the above theta and E distribution of Mollers through GEMC with and without Solenoid on.  Determine the Theta and E range of Mollers that enter the detector.
 +
 
 +
 
 +
Scanning from 2MeV to 5500MeV, and 0 to 36 degrees in Theta.
 +
 
 +
For Solenoid on with 5T:
 +
 
 +
<pre>
 +
<gcard>
 +
 
 +
        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ctof/ctof"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ftof/ftof"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/htcc/htcc"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/pcal/pcal"            factory="TEXT" variation="original"/>
 +
        <option name="BEAM_P"  value="e-, 2.800*GeV, 18.0*deg, 10*deg"/>
 +
        <option name="SPREAD_P" value="2.798*GeV, 18*deg, 180*deg"/>
 +
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
 +
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
 +
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
 +
        <option name="OUTPUT" value="evio,eg12.ev"/>
 +
 
 +
</gcard>
  
==[[DV_Creating_LUND_Files|Creating LUND Files]]==
+
</pre>
  
==[[DV_Running_GEMC|Running GEMC]]==
+
Using the standard commands for gemc
  
==[[DV_Running_Reconstruction|Running Reconstruction Simulations]]==
+
<pre>
 +
gemc -USE_GUI=0 -N=1000 eg12_sol.gcard
 +
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=-1.0 -config DCHB::solenoid=1.0 -config DCTB::kalman=true -o eg12_rec.ev -s DCHB:DCTB:EC:FTOF:EB
 +
~/src/CLAS/coatjava-1.0/bin/run-groovy Analysis.groovy eg12_rec.0.evio
 +
</pre>
  
==[[DV_Analyze_Recon|Analyzing Reconstruction Data]]==
 
  
=Reconstruction of Random Within Certain Range=
+
Checking for a reconstructed particle that undergoes a phi shift where the 1st column is energy and the 2nd the scattering angle theta:
==Modified gcards==
+
<pre>
 +
For Energy:
 +
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
 +
289    0.6624017631112946      33.37507824033966      -179.63657653407975    0.7254709      29.696417      -177.79057      473.36051689004984      11.978802748439216      -129.55774724876173
  
=Effects of Solenoid on Moller Electrons=
 
  
=Cover Full Solid Angle of Detector=
+
awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
 +
978    5.584765946130235      24.90893565820338      -170.69784116534063    5.593401        24.90894        -170.65994      472.16552666546283      23.31807917059094      -165.11125601370114
  
==[[Calculations of 4-momentum components]]==
+
For Theta:
 +
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
 +
12      4.83485521395583        10.577021312967325      -50.86708775351051      4.8205996      10.617784      -50.895683      491.627055439108        5.9032309421001985      -43.82964507576243
  
 +
awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
 +
187    1.3382869250001856      35.63598792463312      29.887530073265214      1.3481133      35.449417      30.009071      472.455052447561        19.034043420497742      55.20328358414997
 +
</pre>
  
  
===Alter Phi Angles===
+
Similarly for 0T:
 +
<pre>
 +
For Energy:
 +
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
 +
148    0.36418038435234207    33.68296595663359      -175.89942431595827    0.35383263      51.743824      -39.45801      469.5694572319308      24.353383233947522      -176.27025218702502
  
From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above.  Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created.  Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created.  Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created.  Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller.
 
[[Altering Phi Angles]]
 
  
 +
awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
 +
818    5.5278794590742235      12.937136966282836      -43.35663621477178      5.539351        12.95216        -49.09295      484.8800252169308      8.27731670021694        -43.245753766203364
  
Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles (<math>\theta = 0, \phi = 0</math>). From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron. With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame. In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.  
+
For Theta:
 +
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
 +
559    4.909449160222199      9.918634647646794      0.06548256930681198    4.914272        9.938521        -5.861595      492.1448533455858      7.501204563534799      -0.006721611135017764
  
10 separate trials were run for 10,000 events each.
+
awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:
+
326    1.272966353429713      35.731680814303196      85.3173707349696        1.2830343      38.27654        58.368687      483.4835073848272      3.950855595379657      83.87603767806992
 +
</pre>
  
<pre>hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root</pre>
+
=Reconstruction of Moller Events=
  
The Phi distribution for the CM and Lab frame.
+
==[[DV_Creating_LUND_Files|The LUND format]]==
  
 +
==[[DV_Running_LUND_for_Moller_Distribution|Writing LUND files]]==
  
[[File:MolPhiLab.png]][[File:MolPhiCM.png]]
+
==[[DV_Running_GEMC|Running GEMC]]==
  
 +
==[[DV_Analyze_Recon|Phi Shift observation using DC hit Reconstruction Data]]==
  
Their LUND files were combined using
+
=Gcard creation defining energy and angle range of electrons=
 +
==[[Modified gcards]]==
  
<pre>cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND</pre>
+
=Effects of Solenoid on Electrons=
 +
==[[Results for known Moller events|Results for defined distribution in Solenoid Fields]]==
  
resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries.  This was divided into 177 file parts of 75000 each.  The first set from the original data set is shown below. 
+
==[[Results for Random Spread of Energy and angle theta in the Lab frame]]==
  
<pre>split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_</pre>
+
=Cover Full Solid Angle of Detector=
  
 +
==Using GEANT simulation data==
 +
===[[Calculations of 4-momentum components]]===
  
<center>[[File:File1of177.png]]</center>
+
===[[Alter Phi Angles]]===
  
It was shown earlier that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b</math>
+
===[[Check Differential Cross-Section]]===
  
For an Ammonia target:
 
:::::<math>\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times  \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns</math>
 
  
  
If the beam had 4E9 incident electrons, the differential cross-section would be found with,
 
  
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b</math>
+
==Detector Occupancy==
  
Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed. Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.
+
clas12->Draw("Detector.wire:Detector.layer>>(7,1,7,120,0,120)","Detector.superlayer<3","colz")
  
{| border=1
+
===[[gcard settings for daughter and procID|Gcard settings]]===
  |+ Moller Events per Incident Electrons
+
 
|-
+
===[[Verfication of Mother/Daughter Occupancy]]===
  ! # of Incident Electrons
+
 
  ! # of Moller Events
+
===[[Benchmark GEMC Occupancy Prediction for 11GeV Electron Beam with 0T Solenoid for LH2]]===
  ! # of E>500MeV
+
 
|-
+
 
  | 1e6
+
===[[Setup for Batch Job With Varying Experimental CLAS12 Quantities]]===
  | 38343
+
===[[Run_in_GEMC]]===
  | 134
+
===[[Center_of_Mass_for_Stationary_Target]]===
|-
 
  | 1e7
 
  | 383633
 
  | 1490
 
|-
 
  | 4e9
 
  | 12444898
 
  | 48548
 
|}
 
  
 +
===[[Run Occupancy for Sector 1 DC hits]]===
 +
 
 +
===[[Wire_angle_correspondance]]===
 +
===[[Isotropic Weighted Moller Distribution in GEMC]]===
  
 +
=Papers used=
  
This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV.  Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.
+
[1]Farrukh Azfar's Derivation of Moller Scattering
  
Using the same expression, but this time for 4e10 incident electrons,
+
:::[[File:FarrukAzfarMollerScatter.pdf]]
  
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b</math>
+
A polarized target for the CLAS detector
  
Rebining the histogram to account for the unequal weighting of the bins outlined in the table above
+
:::[[File:PHY02-33.pdf‎]]
  
<pre>TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
+
An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons
Combo->Add(MolThetaCM,8.87e-10);
 
Combo->Draw();
 
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
 
hnew=Combo->Rebin(15,"hnew",Bins);
 
hnew->Draw();
 
Theory->Draw("same");</pre>
 
  
 +
:::[[:File:1819.pdf]]
  
[[File:Extended_DiffXSect_TheoryExperiment.png]]
+
==QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering==
 +
http://arxiv.org/abs/1602.07609
  
===Running LUND files in GEMC===
+
[[File:ChangingRates_S1_PhiThetaHits.png | 600 px]]
  
Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;
+
[[File:S1_50nA_PrimaryElectronSigmasWeightedRates.png | 600 px]]
  
Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.
+
[[File:S1_PhiThetaGammaHits.png | 600 px]]
  
  
'''1)'''Once the LUND file is broken into 178 parts, they can have the LUND extension added by:
+
[[File:HitMakeUp.png]]
  
<pre>prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*</pre>
 
  
Placing each of these files into its own directory, within a directory named Phi_Parts
+
[[File:S1_50nA_PrimaryElectronSigmasWeightedRates_Full.png | 600 px]]
  
<pre>find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;</pre>
+
[[File:ComparingOppositeFields_S1_PhiThetaHits.png | 800 px]]
  
  
'''2)'''Creating the submit directory, and using a c++ program, creating the needed 178
+
[[File:ChangingSolenoidRates_wo_Magnets.png|800 px]]
  
<pre>#include <iomanip>
 
#include <sstream>
 
#include <iostream>
 
#include <fstream>
 
  
using namespace std;
+
[[File:ComparingDCcomponents_S1_PhiThetaHits.png| 800 px]]
  
void submit() {
 
  
        for(int a=0;a<2;a++)
 
        {
 
                for(int b=0;b<10;b++)
 
                {
 
                        for(int c=0;c<10;c++)
 
                        {
 
                                string filename="submit0";
 
                                stringstream hundreds;
 
                                        hundreds << a;
 
                                stringstream tens;
 
                                        tens << b;
 
                                stringstream ones;
 
                                        ones << c;
 
                                string fullname="";
 
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
 
                        //              cout << fullname << "\n";
 
                       
 
                                ofstream myfile;
 
                                myfile.open(fullname.c_str());
 
                               
 
                               
 
                                myfile << "#!/bin/sh\n";
 
                                myfile << "#PBS -l nodes=1\n";
 
                                myfile << "#PBS -A FIAC\n"; 
 
                                myfile << "#PBS -M vanwdani@isu.edu\n";
 
                                myfile << "#PBS -m abe\n";
 
                                myfile << "#\n";
 
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
 
                                myfile << "tcsh\n";
 
                                myfile << "source setup\n";
 
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
 
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
 
                                        myfile <<a<<b<<c<<"\n";
 
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
 
                                        myfile <<a<<b<<c;
 
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
 
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
 
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
 
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
 
                               
 
                               
 
                                myfile.close();
 
                        }
 
                }
 
        }
 
       
 
}</pre>
 
 
 
  
This creates the submitXXXX file
+
[[File:ComparingDCEndplates_S1_PhiThetaHits.png | 800 px]]
  
<pre>#!/bin/sh
 
#PBS -l nodes=1
 
#PBS -A FIAC
 
#PBS -M vanwdani@isu.edu
 
#PBS -m abe
 
#
 
cd /home/lds/src/CLAS/GEMC
 
tcsh
 
source setup
 
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
 
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
 
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
 
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
 
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio
 
  
</pre>
+
[[File:ComparingMagnetComponents_S1_PhiThetaHits.png| 800 px]]
  
 +
[[File:S1_PhiThetaGammaHits_Full.png | 600 px]]
  
Creating a file named lds-submit
 
  
[[File:Screen_Shot_2016-03-15_at_2.36.26_PM.png]]
 
  
----
 
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]
 
  
=Papers used=
+
Tomography
  
[1]Farrukh Azfar's Derivation of Moller Scattering
+
[[File:S1_PhiThetaGammaVertex_wo_MagnetComponents.png | 600 px]]
  
:::[[File:FarrukAzfarMollerScatter.pdf]]
 
  
A polarized target for the CLAS detector
+
=GEANT4 Simulation of Lead Conic Moller Shield=
 +
==[[Lead Shield Cone]]==
  
:::[[File:PHY02-33.pdf‎]]
+
====OLD====
 +
{| class="wikitable"
 +
|+ FTOn from Forward Vertex
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_36_38_R2_36_38
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons
+
|}
 +
{| class="wikitable"
 +
|+ OLD! FTOn from 0,0,0 Vertex
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_36_38_R2_36_38
 +
| 405 Hz
 +
| 15480 Hz
 +
| 160 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_50_52
 +
| 470 Hz
 +
| 15227 Hz
 +
| 146 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_70_72
 +
| 461 Hz
 +
| 15045 Hz
 +
| 150 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_75_77
 +
| 372 Hz
 +
| 14916 Hz
 +
| 130 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_80_82
 +
| 376 Hz
 +
| 14995 Hz
 +
| 109 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_90_92
 +
| 413 Hz
 +
| 14580 Hz
 +
| 119 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_95_97
 +
| 383 Hz
 +
| 14186 Hz
 +
| 117 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_111_113
 +
| 447 Hz
 +
| 14196 Hz
 +
| 109 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_116_118
 +
| 420 Hz
 +
| 14167 Hz
 +
| 144 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_121_123
 +
| 389 Hz
 +
| 14251 Hz
 +
| 117 Hz
 +
| ?
 +
|-
 +
! R1_74_76_R2_151_153
 +
| 492 Hz
 +
| 14280 Hz
 +
| 110 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_500_503
 +
| 1000 Hz
 +
| 18363 Hz
 +
| 120 Hz
 +
| ?
 +
|}
  
:::[[:File:1819.pdf]]
+
{| class="wikitable"
 +
|+ FTOn from (0,0,0) Vertex w/o FT
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_0_524.0_R2_0_1034.47
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
==QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering==
+
|}
http://arxiv.org/abs/1602.07609
 
  
 +
{| class="wikitable"
 +
|+ FTOn from Forward Vertex
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_36_38_R2_36_38
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
 +
|}
  
  
 +
[[VanWasshenova_Thesis]]
  
 
[[EG12]]
 
[[EG12]]

Latest revision as of 18:03, 13 January 2019

need to insert moller shielding into card after moller LUND file is created. (see clas12/beamline)

Simulating the Moller scattering background for EG12

Docker

Set up Docker Container

Moller Differential Cross-Section

GEANT4 Simulation of Moller Events

Simulation Setup

Use GEANT4 via GEMC to estimate the Moller background for electron scattering experiments in JLab's Hall B. The first step towards this goal is to use GEANT4 without the GEMC infrastructure to create event (LUND) files that will be used as input events for GEMC.

Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using LH2

Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging LH2

Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.

Experimental and Theoretical Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The experimental and theoretical Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference.

Change to a NH3 Target

Replacing the LH2 target with an NH3 target

Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using NH3

Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging NH3

Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.

Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.

LH2 Vs. NH3

Benchmark GEANT4's Moller scattering prediction for NH3 and LH2

Effects Due to Target Material

Target Density

Atomic Mass and Electron Number Effects

Differential Cross-Section Offset

Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target. The theoretical differential cross-section has been adjusted to account for the 10 electrons within NH3.

ROOT Macro to read LUND files and make plots


LUND MolMomCM.pngLUND MolThetaCM.png


LUND MolMomLab.pngLUND MolThetaLab.png


Run the above theta and E distribution of Mollers through GEMC with and without Solenoid on.  Determine the Theta and E range of Mollers that enter the detector.


Scanning from 2MeV to 5500MeV, and 0 to 36 degrees in Theta.

For Solenoid on with 5T:

<gcard>

        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ctof/ctof"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ftof/ftof"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/htcc/htcc"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/pcal/pcal"            factory="TEXT" variation="original"/>
        <option name="BEAM_P"   value="e-, 2.800*GeV, 18.0*deg, 10*deg"/>
        <option name="SPREAD_P" value="2.798*GeV, 18*deg, 180*deg"/>
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
        <option name="OUTPUT" value="evio,eg12.ev"/>

</gcard>

Using the standard commands for gemc

gemc -USE_GUI=0 -N=1000 eg12_sol.gcard
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=-1.0 -config DCHB::solenoid=1.0 -config DCTB::kalman=true -o eg12_rec.ev -s DCHB:DCTB:EC:FTOF:EB
~/src/CLAS/coatjava-1.0/bin/run-groovy Analysis.groovy eg12_rec.0.evio


Checking for a reconstructed particle that undergoes a phi shift where the 1st column is energy and the 2nd the scattering angle theta:

For Energy:
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
289     0.6624017631112946      33.37507824033966       -179.63657653407975     0.7254709       29.696417       -177.79057      473.36051689004984      11.978802748439216      -129.55774724876173


awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
978     5.584765946130235       24.90893565820338       -170.69784116534063     5.593401        24.90894        -170.65994      472.16552666546283      23.31807917059094       -165.11125601370114

For Theta:
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
12      4.83485521395583        10.577021312967325      -50.86708775351051      4.8205996       10.617784       -50.895683      491.627055439108        5.9032309421001985      -43.82964507576243

awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
187     1.3382869250001856      35.63598792463312       29.887530073265214      1.3481133       35.449417       30.009071       472.455052447561        19.034043420497742      55.20328358414997


Similarly for 0T:

For Energy:
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
148     0.36418038435234207     33.68296595663359       -175.89942431595827     0.35383263      51.743824       -39.45801       469.5694572319308       24.353383233947522      -176.27025218702502


awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
818     5.5278794590742235      12.937136966282836      -43.35663621477178      5.539351        12.95216        -49.09295       484.8800252169308       8.27731670021694        -43.245753766203364

For Theta:
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
559     4.909449160222199       9.918634647646794       0.06548256930681198     4.914272        9.938521        -5.861595       492.1448533455858       7.501204563534799       -0.006721611135017764

awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
326     1.272966353429713       35.731680814303196      85.3173707349696        1.2830343       38.27654        58.368687       483.4835073848272       3.950855595379657       83.87603767806992

Reconstruction of Moller Events

The LUND format

Writing LUND files

Running GEMC

Phi Shift observation using DC hit Reconstruction Data

Gcard creation defining energy and angle range of electrons

Modified gcards

Effects of Solenoid on Electrons

Results for defined distribution in Solenoid Fields

Results for Random Spread of Energy and angle theta in the Lab frame

Cover Full Solid Angle of Detector

Using GEANT simulation data

Calculations of 4-momentum components

Alter Phi Angles

Check Differential Cross-Section

Detector Occupancy

clas12->Draw("Detector.wire:Detector.layer>>(7,1,7,120,0,120)","Detector.superlayer<3","colz")

Gcard settings

Verfication of Mother/Daughter Occupancy

Benchmark GEMC Occupancy Prediction for 11GeV Electron Beam with 0T Solenoid for LH2

Setup for Batch Job With Varying Experimental CLAS12 Quantities

Run_in_GEMC

Center_of_Mass_for_Stationary_Target

Run Occupancy for Sector 1 DC hits

Wire_angle_correspondance

Isotropic Weighted Moller Distribution in GEMC

Papers used

[1]Farrukh Azfar's Derivation of Moller Scattering

File:FarrukAzfarMollerScatter.pdf

A polarized target for the CLAS detector

File:PHY02-33.pdf

An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons

File:1819.pdf

QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering

http://arxiv.org/abs/1602.07609

ChangingRates S1 PhiThetaHits.png

S1 50nA PrimaryElectronSigmasWeightedRates.png

S1 PhiThetaGammaHits.png


HitMakeUp.png


S1 50nA PrimaryElectronSigmasWeightedRates Full.png

ComparingOppositeFields S1 PhiThetaHits.png


ChangingSolenoidRates wo Magnets.png


ComparingDCcomponents S1 PhiThetaHits.png


ComparingDCEndplates S1 PhiThetaHits.png


ComparingMagnetComponents S1 PhiThetaHits.png

S1 PhiThetaGammaHits Full.png



Tomography

S1 PhiThetaGammaVertex wo MagnetComponents.png


GEANT4 Simulation of Lead Conic Moller Shield

Lead Shield Cone

OLD

FTOn from Forward Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 ? ? ? ?
OLD! FTOn from 0,0,0 Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 405 Hz 15480 Hz 160 Hz ?
R1_36_38_R2_50_52 470 Hz 15227 Hz 146 Hz ?
R1_36_38_R2_70_72 461 Hz 15045 Hz 150 Hz ?
R1_36_38_R2_75_77 372 Hz 14916 Hz 130 Hz ?
R1_36_38_R2_80_82 376 Hz 14995 Hz 109 Hz ?
R1_36_38_R2_90_92 413 Hz 14580 Hz 119 Hz ?
R1_36_38_R2_95_97 383 Hz 14186 Hz 117 Hz ?
R1_36_38_R2_111_113 447 Hz 14196 Hz 109 Hz ?
R1_36_38_R2_116_118 420 Hz 14167 Hz 144 Hz ?
R1_36_38_R2_121_123 389 Hz 14251 Hz 117 Hz ?
R1_74_76_R2_151_153 492 Hz 14280 Hz 110 Hz ?
R1_36_38_R2_500_503 1000 Hz 18363 Hz 120 Hz ?
FTOn from (0,0,0) Vertex w/o FT
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_0_524.0_R2_0_1034.47 ? ? ? ?
FTOn from Forward Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 ? ? ? ?


VanWasshenova_Thesis

EG12