Difference between revisions of "Analysis"

From New IAC Wiki
Jump to navigation Jump to search
 
(887 intermediate revisions by the same user not shown)
Line 1: Line 1:
[http://www.jlab.org/~shifeng EG1 run database ]<br>
+
[[Particle Identification]]<br>
[http://www.jlab.org/~claseg1/eg1summ.html run summary]<br>
+
[[Quality Checks]]<br>
[http://www.jlab.org/Hall-B/secure/eg1/EG2000/fersch/QUALITY_CHECKS/file_quality/runinfo.txt polarization info]<br>
 
  
=Particle Identification=
+
[[EG1_Teleconferences_DeltaDoverD]]
==Electron==
 
  
=== Cuts ===
+
[[http://wiki.iac.isu.edu/index.php/Delta_D_over_D Back to Delta_D_over_D]]
  
==== Calorimeter based cuts====
 
The distributions below represent two types of cuts applied to improve the electron particle identification (PID) using a 4 GeV electron beam incident on an NH3 target.  The electron calorimeter is segmented into an inner<math>EC_{inner}</math> and an outer<math>EC_{outer}</math> region.  The total energy absorbed by the calorimeter system is recorded in the variable <math>EC_{tot}</math>.  The momentum (<math>P</math>) is calculated using the reconstructed track and the known torus magnetic field.  The distributions of <math>EC_{tot}</math> and <math>EC_{inner}</math> are shown below where both have been divided by the electron momentum and no cuts have been applied.
 
  
 +
[[ phi angle in CM frame for different runs]]<br>
  
 
+
[[some things]]
=====<math>EC_{tot}>0.2*p</math>=====
 
 
 
 
 
Without any cuts we have 181018 entries. After using the following cut <math>EC_{tot}>0.2*p</math> we are getting 127719 entries, which is about 70.55% of 181018. <br>
 
 
 
[[Image:Etotal_P_using_tot_cut.gif | 200 px]]  
 
[[Image:Einner_P_using_tot_cut.gif | 200 px]]<br>
 
 
 
=====<math>EC_{inner}>0.08*p</math>=====
 
 
 
 
 
After the cut on the energy deposited into inner part of electron calorimeter, number of entries decreases by 22%.<br>
 
 
 
[[Image:Etotal_P_using_inner_cut.gif | 200 px]] [[Image:Einner_P_using_inner_cut.gif | 200 px]]<br>
 
 
 
=====Both cuts <math>  EC_{tot}>0.2*p </math> and <math> EC_{inner}>0.08*p  </math>=====
 
 
 
In case of using the cuts of the total deposited energy and the energy deposited into inner calorimeter number of entries decreases ~36% <br>
 
 
 
[[Image:Etotal_P_using_both_cuts.gif | 200 px]]
 
[[Image:Einner_P_using_both_cuts.gif | 200 px]]<br>
 
 
 
====summary table====
 
 
 
The "# of triggers" columns represents the number of events which generated a signal above threshold in the calorimeter and the scintillator.  The expected # of events column represents the number of reconstructed events with tracks that also make it through the cuts defined in the table.
 
 
 
The semi-inclusive analysis will focus on the 4 GeV and 6 GeV data which have both inbending and outbending torus settings.  Specifically runs 28074 - 28579 ( 4 GeV) and Runs 27356 - 27499 and 26874 - 27198 (6 GeV)
 
 
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || cuts || || || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)||p<3,<math>EC_{tot}>0.2*p </math>,<math> EC_{inner}>0.08*p</math>(%)||p>3,<math>EC_{tot}>0.24*p </math>,<math> EC_{inner}>0.06*p</math>(%)
 
|-
 
| || || || || || <math>EC_{tot}>0.2*p</math> || <math>EC_{inner}>0.08*p</math>|| <math>EC_{tot}>0.2*p </math> and <math> EC_{inner}>0.08*p</math>|| || || ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||64%||49.5%||78%||60||3.2
 
|-
 
|1606||1946||25560||25605|| || ||44
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||64%||49%||78%||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||21%||11%||24%||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||4.6%||3%||6.6%||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||4.8%||2.2%||5.9%||211||20
 
|-
 
|1724||1500||28512||28526|| || ||159
 
|-
 
|1724||-1500||28527||28532|| || ||93
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||20.2%||13%||25.6%||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||5.7%||4.6%||8.6%||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||6.1%||4.4%||8.9%||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||27.8%||13%||29.6%||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||6.7%||5%||9.9%||69||20.6
 
|-
 
|3210||-2250||28549||28570|| || ||436
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||35.3%||23.9%||40.5%||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||9.1%||9.4%||13.6%||2620||15.2
 
|-
 
|4239||2250||28482||28494|| || ||7
 
|-
 
|4239||-2250||28500||28505|| || ||107
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00||29.5%||22%||36%||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||33.2%||27.8%||41.3%||56||19.4||44.6||40.1
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||12.6%||14.8%||19.5%||130||13.6||25.3||8.8
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||33.4%||27.8%||41.4%||1210||20.2||44.8||40.1
 
|-
 
|5627||965||27502||27617|| || ||493
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||13%||15%||20%||1709||19.9||25.6||9.1
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||33.3%||28.8%||42.2%||1509||15||46||40.2
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||12.2%||14.4%||19.1%||1189||10||24.6||9.3
 
|-
 
|5764||0||26723||26775|| || ||268
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||13.5%||15.5%||20.5%||662||15.9||26.4||9.2
 
|}
 
 
 
====Cut on the number of photoelectrons====
 
 
 
 
 
In this case is used a cut on the number of photoelectrons, which is <math>nphe>2.5</math>. The plots below show the 
 
effect of the number of photoelectrons cuts on the Cerenkov distribution. We see that after using cut the number of entries decreases ~40.7%
 
<br>
 
 
[[Image:nphe_before_cut_file_27070.gif|200px]]  [[Image:nphe1_after_cut_file_27070.gif|200px]]<br>
 
 
 
 
 
Used cuts <math>EC_{tot}>0.24p</math> and <math>EC_{inner}>0.06p</math><br>
 
 
 
 
 
[[Image:nphe_before_electron_cuts_file_27070.gif|200px]]  [[Image:nphe1_after_electron_cuts_file_27070.gif|200px]]<br>
 
 
 
 
 
 
 
Used file dst28181_03(energy 4.2GeV). In this case was applied cuts on the polar angle(<math>15<\theta<20</math>) and momentum(<math>2.2<P<2.6</math>). Number of entries decreased by 96%(?????????????/)<br>
 
 
 
 
 
[[Image:nphe_before_cuts_file_28181.gif|200px]]  [[Image:nphe1_after_cuts_file_28181.gif|200px]]<br>
 
 
 
[http://www.jlab.org/Hall-B/secure/eg1/EG2000/nevzat/UPGRADE_DST/ Tamuna: follow this link to see the OSIPENKO cuts described in part 5 add graphs of their effect below]
 
 
 
====Plot of <math>EC_{tot}/p</math> vs <math>EC_{inner}/p</math>====
 
 
 
In this case is used file dst27070(Energy 5.735 GeV and Torus 2250) and are applied the following EC cuts: For ECtotal - <math>EC_{tot}>0.2p</math>, for EC inner - <math>EC_{inner}>0.08p</math>.<br>
 
 
 
=====P<3=====
 
 
 
After using above cuts the number of entries decreases ~46%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====0.5<P<1=====
 
The number of entries decreased by ~51.8%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P1_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P1_file_dst27070.gif|200px]]<br>
 
 
 
=====1<P<1.5=====
 
 
 
The number of entries decreased approximately by 47.8%<br>
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P1.5_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P1.5_file_dst27070.gif|200px]]<br>
 
 
 
=====1.5<P<2=====
 
 
 
In this case the number of entries decreased by 46.1%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P2_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P2_file_dst27070.gif|200px]]<br>
 
 
 
=====2<P<2.5=====
 
 
 
In this case the number of entries decreased by 38%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P2.5_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P2.5_file_dst27070.gif|200px]]<br>
 
 
 
=====P>3=====
 
 
 
Used file dst27070(Energy 5.735 GeV and Torus 2250) and are applied the following EC cuts: For ECtotal - <math>EC_{tot}>0.24p</math>, for EC inner - <math>EC_{inner}>0.06p</math>.<br>
 
 
 
The number of entries decreased by~40.2%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P3_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P3_file_dst27070.gif|200px]]<br>
 
 
 
====Plot of EC_tot/P vs nphe for Electrons====
 
Used file dst27070(Energy 5.735 GeV and Torus 2250)<br>
 
=====p<3 GeV=====
 
The graphs below represents all electron candidates having a momentum smaller than 3 GeV.  Negatively charged pions are the most likely particle to be misidentified as an electrons by the tracking software.  A negatively charged pion having a momentum of 3 GeV would generate less than ?? photons in the cerenkov counter.  As a result the electron candidates which <math>n_{pe} < 1.xx </math> are thought to be misidentified pions.  The images which follow represent the effects of several cuts made for the purpose of removing misidentified particles.
 
 
 
Insert writeup on Cherenkov light for <math>e^-</math> and <math>\pi^-</math>
 
 
 
The number of photons produced per unit path length of a particle with charge ze and per unit energy interval of the photons is <br>
 
 
 
<math>\frac{d^2 N}{dEdx}=\frac{\alpha z^2}{\hbar c}sin ^2 \theta_c=\frac{\alpha z^2}{\hbar c}[1-\frac{1}{\beta^2 n^2 (E)}]</math><br>
 
 
 
where <math>\theta_c</math> is the angle of Cerenkov radiation relative to the particle's direction, <math>\beta c</math> - the particle's velocity and n - index of refraction of the medium.<br>
 
 
 
<math>cos \theta_c=\frac{1}{n \beta}</math><br>
 
 
 
;Example for <math>\pi^-</math> <br>
 
 
 
<math>m_{\pi^-}=139.57[\frac{MeV}{c^2}]</math>, momentum <math>p=mv=3 [\frac{GeV}{c}]</math> and n=1.001080<br>
 
 
 
where <math>\frac{\alpha}{\hbar c}=370[ eV^{-1} cm^{-1}] </math><br>
 
 
 
<math>\frac{d^2 N}{dEdx}=370 \times 1 \times [1 - \frac{1}{21.495^2 \times 1.001080}][\frac{1}{eV \times cm}]=369.2 [eV^{-1} cm^{-1}] </math><br>
 
 
 
;Example for <math>e^-</math> <br>
 
 
 
 
 
From these calculations, In case of electrons (an incident particle) we should get 369.99(9) photons per unit path length of electron and per unit energy and for <math>\pi^-</math> 369.2<br>
 
 
 
 
 
 
 
[[Image:e_total_vs_nphe_momentum_cut_file_dst27070.gif|200px]]<br>
 
 
 
=====p<3 GeV and <math>EC_{inner}>0.08p</math>=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_Ec_inner_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====p<3 GeV, <math>EC_{inner}>0.08p</math> and <math>EC_{tot}>0.2p</math>=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_EC_inner_EC_total_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====p<3 GeV, <math>EC_{inner}>0.08p</math>, <math>EC_{tot}>0.2p</math> and nphe>2.5=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_EC_inner_EC_total_nphe_cuts_file_dst27070.gif|200px]]<br>
 
 
 
====Plot of EC_total vs EC_inner====
 
 
 
In this case file dst28181_03.B00 was used(Energy 4.2 GeV and Torus +2250). The following cuts were applied:<math>EC_{inner}>0.005</math>, <math>EC_{tot}>0.2*p</math>, ec_chi_sqr<0.1 and nphe>3.<br>
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/sharon/ec_cut_4p2gev/Final_ec_cuts/Electron_cuts.html
 
[[Image:Etotal_vs_Einner_file_dst28181_03_before_cuts.gif|200px]]
 
[[Image:Etotal_vs_Einner_file_dst28181_03_after_cuts.gif|200px]]<br>
 
 
 
====Raster and vertex correction====
 
 
 
 
 
A raster calibration and a cut on the vertex distribution was made in order to select electrons from the polarized target, also the ones scattered from other materials in the beam path. A plot of the uncorrected vertex distribution is presented below for dst27070_02.B00 file(energy=5.7GeV  Torus=2250)<br>
 
 
 
[[Image:vertex_before_corrections_dst27070_file.gif|200px]]
 
 
 
==Pion==
 
 
 
===Summary Table===
 
 
 
Tamuna: 
 
The pion id code is at:
 
 
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pion.cc
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)||p>3,<math>EC_{tot}<0.2*p </math>,<math> EC_{inner}<0.08*p</math>(%)||p<3,<math>EC_{tot}<0.24*p </math>,<math> EC_{inner}<0.06*p</math>(%)
 
|-
 
| || || || || || || || ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||60||3.2
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||211||20
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||69||20.6
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||2620||15.2
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||56||19.4||36.1||31.5
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||130||13.6||25||43.8 
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||1210||20.2||39.8||32.4 
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||1709||19.9||22.5||46.4 
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||1509||15||34.6||32.9 
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||1189||10||25.2||44.3 
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||662||15.9||21.3||44
 
|}
 
 
 
===Table for Pions===
 
 
I used the pion id code(both subroutines):
 
 
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pion.cc
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || events remaining after cuts || || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)
 
|-
 
| || || || || || first(%) || second(%)|| ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||96.8||99||60||3.2
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||98.1||98.9||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||13.4||22.8||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||11.3||15.3||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||15.3||18.7||211||20
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||16.4||18.9||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||11.1||14.2||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||11.1||14.2||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||22.4||23.1||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||12.3||15.4||69||20.6
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||16.7||14.3||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||10.4||12.6||2620||15.2
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00|| %|| %||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||40.5||40.8||56||19.4
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||9.7||12.7||130||13.6 
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||14.1||15.5||1210||20.2
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||12.1||14.5||1709||19.9 
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||19.5||22.9||1509||15
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||9.6||13.3||1189||10
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||10.3||13.9||662||15.9
 
|}
 
 
 
===Plot of EC_tot/P vs nphe for Pions===
 
 
 
[[Image:e_total_vs_nphe_pions_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_nphe_electrons_file_dst27070.gif|200px]]
 
 
 
=Quality Checks=
 
== Run Summary Table ==
 
The table below uses a characteristic DST file to try and estimate the sample size for a semi-inclusive analysis of pion electroproduction.  The column marked "cuts" below indicates the number of events kept when the standard EC based electron identification cuts, described above, are used: <math>EC_{tot}>0.2*p </math> and <br><math> EC_{inner}>0.08*p</math>.  The next step will be to compare unpolarized pion production rates in order to evaluate the CLAS detectors efficiencies for measuring charged pions with different torus polarities.  The question is whether you get the same rates for negatively charged pions in one torus polarity to positively charged pions using the opposite torus polarity.
 
 
 
  Tamar: We need  a convention for choosing only one of the pions in events with
 
multiple pions.  I believe I chose the pion with the highest momentum before.
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Target || Begin Run||End Run ||file used || # trig(<math>10^6</math>) || events remaining after <math>e^-</math> cuts(%)  || expected # evts(<math>10^6</math>)|| events remaining after <math>e^-</math> and <math>\pi^+</math> cuts(%) || expected # evts(<math>10^6</math>)|| events remaining after <math>e^-</math> and <math>\pi^-</math> cuts(%) || expected # evts(<math>10^6</math>)
 
|-
 
|4239||2250||NH3 || 28205||28277||/cache/mss/home/nguler/dst/dst28205_05.B00||1108.72||60.8||674.1||8.3||92.02||3.24||35.92
 
|-
 
|||||ND3 || 28074||28190||/cache/mss/home/nguler/dst/dst28187_05.B00||1117.87||59.6||666.25||7.99||89.32||3.3||36.9
 
|-
 
|||-2250||NH3 || 28407||28479||/cache/mss/home/nguler/dst/dst28409_05.B00||1013.57||24.2||245.28||0.12||1.22||0||0
 
|-
 
|||||ND3 || 28278||28403||/cache/mss/home/nguler/dst/dst28400_05.B00||1556.04||23.9||371.89||0.02||0.31||0.05||0.51
 
|-
 
|5735||2250|| NH3 ||27074||27195||/cache/mss/home/nguler/dst/dst27095_05.B00||1442.25||57.7||832.18||9.3||134.13||3.8||59.13
 
|-
 
||||| ND3 ||27116||27170||/cache/mss/home/nguler/dst/dst27141_05.B00||624.55||59.1||369.10||9.53||59.52||3.9||24.36
 
|-
 
|||-2250|| NH3 ||26911||27015||/cache/mss/home/nguler/dst/dst26988.B00||900.93||80.7||727.05||7.14||64.33||9.9||89.19
 
|-
 
||||| ND3 ||27022||27068||/cache/mss/home/nguler/dst/dst27055_05.B00|| 711.53||80||569.22||6.97||49.59||10.1||71.86
 
|-
 
 
 
|}
 
 
 
==Rates==
 
===Unpolarized Pion electroproduction===
 
==== Rates from other experiments in our Kinematic range====
 
 
 
[http://arxiv.org/abs/0709.1946 <math>\vec{e}p \rightarrow n \pi^+</math>  from CLAS]
 
 
 
==== Pion Rates -vs- Paddle for opposite sign Torus fields====
 
 
 
 
 
 
 
 
 
; using all events in which the first particle (the one which caused the trigger) is defined as an electrons and passes the
 
[http://www.iac.isu.edu/mediawiki/index.php/Analysis#Electron above electron cuts].
 
=====sc_paddle vs X_bjorken 5.7 GeV Beam Energy=====
 
 
 
{|border="2" colspan = "4"
 
!no cuts||cuts ||no cuts ||cuts
 
|-
 
|Electrons|| B > 0 ||  || B<0
 
|-
 
|[[Image:electrons_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^-</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^+</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|}
 
 
 
=====sc_paddle vs X_bjorken with cuts 5.7 GeV Beam Energy(number of events=2)=====
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||<math>\pi^-</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_X_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|-
 
!<math>\pi^+</math>||<math>\pi^+</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|}
 
 
 
=====sc_paddle vs Momentum 5.7 GeV Beam Energy=====
 
{|border="2" colspan = "4"
 
!no cuts||cuts ||no cuts || cuts
 
|-
 
|Electons||B > 0  ||  || B<0
 
|-
 
|[[Image:electrons_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
||[[Image:electrons_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^-</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]<br>
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]<br>
 
|-
 
|<math>\pi^+</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]<br>
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]<br>
 
|}
 
 
 
=====sc_paddle vs Momentum with cuts 5.7 GeV Beam Energy(number of events=2)=====
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||<math>\pi^-</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|-
 
!<math>\pi^+</math>||<math>\pi^+</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|}
 
 
 
 
 
Used file dst26988_05.B00(Energy=5.7GeV and Torus=-2250)<br>
 
 
 
[[Image:f_cup_dst26988_05.gif|200px]]
 
[[Image:f_cup_int_dst26988_05.gif|200px]]
 
[[Image:number_of_pions_dst26988_05.gif|200px]]<br>
 
 
 
=====Electrons X -vs - paddle number when pion hits paddle 6 =====
 
 
 
Now ask which paddle the electrons hit as a function of X bjorken when we require<br> that the pion hits paddle #6.
 
 
 
===== Paddle 7 Rates and statistics=====
 
 
 
The number of events per trigger is measured for the respective DST file above and then the Total number events in the data set is estimated from that.
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>\pi^-</math>(B>0)|| || <math>\pi^+</math>(B<0)||
 
|-
 
|  ||  Total Number Events <math>(10^{3})</math> ||Number events per <math>10^6</math> triggers ||  Total Number Events <math>(10^{3})</math>|| Number events per  <math>10^6</math> trigger
 
|-
 
| 0.1 ||5.1 ||71 ||24.6 ||547
 
|-
 
| 0.2 ||6.9 ||96 ||13.7 ||305
 
|-
 
| 0.3 ||3.7 ||51 ||6.2 ||137
 
|-
 
| 0.4 ||3.3 ||45 ||2.7 ||60
 
|-
 
| 0.5 ||0.9 ||13 ||0.99 ||22
 
|-
 
|}
 
 
 
===== Paddle 17 Rates and statistics=====
 
 
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>\pi^-</math>(B<0)|| || <math>\pi^+</math>(B>0)||
 
|-
 
|  ||Total Number Events  <math>(10^{3})</math>||Number events per trigger  ||Total Number Events <math>(10^{3})</math>||Number events per trigger 
 
|-
 
| 0.1 ||6.2 ||137 ||4.6 ||64
 
|-
 
| 0.2 ||3.5 ||79 ||4.9 ||67
 
|-
 
| 0.3 ||1.7 ||39 ||2.6 ||36
 
|-
 
| 0.4 ||0.3 ||7 ||2.1 ||29
 
|-
 
| 0.5 ||0.1 ||2 ||0.6 ||8
 
|-
 
|}
 
 
 
===== Paddle 5 and 8 Rates and statistics for electrons=====
 
 
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>e^-</math> sc_paddle=5 (B>0)|| ||<math>e^-</math> sc_paddle=8 (B<0)||
 
|-
 
|  ||  Total Number Events <math>(10^{3})</math>|| Number events per trigger <math>(10^{3})</math>||Total Number Events <math>(10^{3})</math>||Number events per trigger  <math>(10^{4})</math>
 
|-
 
| 0.1 ||384.9 ||5.314||1665.2 ||3.706
 
|-
 
| 0.2 ||382.5 ||5.282 ||977.8 ||2.176
 
|-
 
| 0.3 ||264.9 ||3.657 ||567.1 ||1.262
 
|-
 
| 0.4 ||159.5 ||2.202 ||328.6 ||0.7313
 
|-
 
| 0.5 ||99 ||1.367 ||218.2 ||0.4856
 
|}
 
 
 
=====Histograms for 5.7 GeV Beam Energy=====
 
 
 
{|border="2" colspan = "4"
 
!Electron energy/momentum||Electron Theta (<math>\theta</math>)  ||Electron Qsqrd  ||Electron X_bjorken
 
|-
 
|B>0 and sc_paddle=5||  ||  ||
 
|-
 
|[[Image:electrons_energy_momentum_dst_27095_with_cuts.gif|200px]]
 
||[[Image:electrons_theta_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_Qsqrd_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_X_bjorken_dst_27095_with_cuts.gif|200px]]
 
|-
 
|B<0 and sc_paddle=8||  ||  ||
 
|-
 
|[[Image:electrons_energy_momentum_dst_26988_with_cuts.gif|200px]]
 
||[[Image:electrons_theta_dst_26988_with_cuts.gif|200px]]
 
|| [[Image:electrons_Qsqrd_dst_26988_with_cuts.gif|200px]]
 
|| [[Image:electrons_X_bjorken_dst_26988_with_cuts.gif|200px]]
 
|-
 
|}
 
 
 
=====X_bjorken for electrons=====
 
 
 
{|border="2" colspan = "4"
 
!B>0 and sc_paddle=5|| B<0 and sc_paddle=8   
 
|-
 
|[[Image:X_bjorken_electrons_with_cuts_sc_paddle_5_dst27095.gif|200px]]
 
||[[Image:X_bjorken_electrons_with_cuts__sc_paddle_8_dst26988.gif|200px]]
 
|}
 
 
 
:Pion Momentum
 
:Pion Scattering Angle
 
:Pion scint paddle number
 
 
 
==Asymmetries==
 
 
 
== Systematic Errors==
 
 
 
[[Media:SebastianSysErrIncl.pdf]]  Sebastian's Writeup
 

Latest revision as of 18:49, 13 January 2009