Difference between revisions of "Analysis"

From New IAC Wiki
Jump to navigation Jump to search
 
(669 intermediate revisions by the same user not shown)
Line 1: Line 1:
[http://www.jlab.org/~shifeng EG1 run database ]<br>
+
[[Particle Identification]]<br>
[http://www.jlab.org/~claseg1/eg1summ.html run summary]<br>
+
[[Quality Checks]]<br>
[http://www.jlab.org/Hall-B/secure/eg1/EG2000/fersch/QUALITY_CHECKS/file_quality/runinfo.txt polarization info]<br>
 
  
=Particle Identification=
+
[[EG1_Teleconferences_DeltaDoverD]]
==Electron==
 
  
=== Cuts ===
+
[[http://wiki.iac.isu.edu/index.php/Delta_D_over_D Back to Delta_D_over_D]]
  
==== Calorimeter based cuts====
 
The distributions below represent two types of cuts applied to improve the electron particle identification (PID) using a 4 GeV electron beam incident on an NH3 target.  The electron calorimeter is segmented into an inner<math>EC_{inner}</math> and an outer<math>EC_{outer}</math> region.  The total energy absorbed by the calorimeter system is recorded in the variable <math>EC_{tot}</math>.  The momentum (<math>P</math>) is calculated using the reconstructed track and the known torus magnetic field.  The distributions of <math>EC_{tot}</math> and <math>EC_{inner}</math> are shown below where both have been divided by the electron momentum and no cuts have been applied.
 
  
 +
[[ phi angle in CM frame for different runs]]<br>
  
 
+
[[some things]]
=====<math>EC_{tot}>0.2*p</math>=====
 
 
 
 
 
Without any cuts we have 181018 entries. After using the following cut <math>EC_{tot}>0.2*p</math> we are getting 127719 entries, which is about 70.55% of 181018. <br>
 
 
 
[[Image:Etotal_P_using_tot_cut.gif | 200 px]]  
 
[[Image:Einner_P_using_tot_cut.gif | 200 px]]<br>
 
 
 
=====<math>EC_{inner}>0.08*p</math>=====
 
 
 
 
 
After the cut on the energy deposited into inner part of electron calorimeter, number of entries decreases by 22%.<br>
 
 
 
[[Image:Etotal_P_using_inner_cut.gif | 200 px]] [[Image:Einner_P_using_inner_cut.gif | 200 px]]<br>
 
 
 
=====Both cuts <math>  EC_{tot}>0.2*p </math> and <math> EC_{inner}>0.08*p  </math>=====
 
 
 
In case of using the cuts of the total deposited energy and the energy deposited into inner calorimeter number of entries decreases ~36% <br>
 
 
 
[[Image:Etotal_P_using_both_cuts.gif | 200 px]]
 
[[Image:Einner_P_using_both_cuts.gif | 200 px]]<br>
 
 
 
====summary table====
 
 
 
The "# of triggers" columns represents the number of events which generated a signal above threshold in the calorimeter and the scintillator.  The expected # of events column represents the number of reconstructed events with tracks that also make it through the cuts defined in the table.
 
 
 
The semi-inclusive analysis will focus on the 4 GeV and 6 GeV data which have both inbending and outbending torus settings.  Specifically runs 28074 - 28579 ( 4 GeV) and Runs 27356 - 27499 and 26874 - 27198 (6 GeV)
 
 
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || cuts || || || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)||p<3,<math>EC_{tot}>0.2*p </math>,<math> EC_{inner}>0.08*p</math>(%)||p>3,<math>EC_{tot}>0.24*p </math>,<math> EC_{inner}>0.06*p</math>(%)
 
|-
 
| || || || || || <math>EC_{tot}>0.2*p</math> || <math>EC_{inner}>0.08*p</math>|| <math>EC_{tot}>0.2*p </math> and <math> EC_{inner}>0.08*p</math>|| || || ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||64%||49.5%||78%||60||3.2
 
|-
 
|1606||1946||25560||25605|| || ||44
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||64%||49%||78%||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||21%||11%||24%||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||4.6%||3%||6.6%||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||4.8%||2.2%||5.9%||211||20
 
|-
 
|1724||1500||28512||28526|| || ||159
 
|-
 
|1724||-1500||28527||28532|| || ||93
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||20.2%||13%||25.6%||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||5.7%||4.6%||8.6%||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||6.1%||4.4%||8.9%||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||27.8%||13%||29.6%||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||6.7%||5%||9.9%||69||20.6
 
|-
 
|3210||-2250||28549||28570|| || ||436
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||35.3%||23.9%||40.5%||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||9.1%||9.4%||13.6%||2620||15.2
 
|-
 
|4239||2250||28482||28494|| || ||7
 
|-
 
|4239||-2250||28500||28505|| || ||107
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00||29.5%||22%||36%||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||33.2%||27.8%||41.3%||56||19.4||44.6||40.1
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||12.6%||14.8%||19.5%||130||13.6||25.3||8.8
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||33.4%||27.8%||41.4%||1210||20.2||44.8||40.1
 
|-
 
|5627||965||27502||27617|| || ||493
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||13%||15%||20%||1709||19.9||25.6||9.1
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||33.3%||28.8%||42.2%||1509||15||46||40.2
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||12.2%||14.4%||19.1%||1189||10||24.6||9.3
 
|-
 
|5764||0||26723||26775|| || ||268
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||13.5%||15.5%||20.5%||662||15.9||26.4||9.2
 
|}
 
 
 
====Cut on the number of photoelectrons====
 
 
 
 
 
In this case is used a cut on the number of photoelectrons, which is <math>nphe>2.5</math>. The plots below show the 
 
effect of the number of photoelectrons cuts on the Cerenkov distribution. We see that after using cut the number of entries decreases ~40.7%
 
<br>
 
 
[[Image:nphe_before_cut_file_27070.gif|200px]]  [[Image:nphe1_after_cut_file_27070.gif|200px]]<br>
 
 
 
 
 
Used cuts <math>EC_{tot}>0.24p</math> and <math>EC_{inner}>0.06p</math><br>
 
 
 
 
 
[[Image:nphe_before_electron_cuts_file_27070.gif|200px]]  [[Image:nphe1_after_electron_cuts_file_27070.gif|200px]]<br>
 
 
 
 
 
 
 
Used file dst28181_03(energy 4.2GeV). In this case was applied cuts on the polar angle(<math>15<\theta<20</math>) and momentum(<math>2.2<P<2.6</math>). Number of entries decreased by 96%(?????????????/)<br>
 
 
 
 
 
[[Image:nphe_before_cuts_file_28181.gif|200px]]  [[Image:nphe1_after_cuts_file_28181.gif|200px]]<br>
 
 
 
[http://www.jlab.org/Hall-B/secure/eg1/EG2000/nevzat/UPGRADE_DST/ Tamuna: follow this link to see the OSIPENKO cuts described in part 5 add graphs of their effect below]
 
 
 
====Plot of <math>EC_{tot}/p</math> vs <math>EC_{inner}/p</math>====
 
 
 
In this case is used file dst27070(Energy 5.735 GeV and Torus 2250) and are applied the following EC cuts: For ECtotal - <math>EC_{tot}>0.2p</math>, for EC inner - <math>EC_{inner}>0.08p</math>.<br>
 
 
 
=====P<3=====
 
 
 
After using above cuts the number of entries decreases ~46%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====0.5<P<1=====
 
The number of entries decreased by ~51.8%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P1_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P1_file_dst27070.gif|200px]]<br>
 
 
 
=====1<P<1.5=====
 
 
 
The number of entries decreased approximately by 47.8%<br>
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P1.5_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P1.5_file_dst27070.gif|200px]]<br>
 
 
 
=====1.5<P<2=====
 
 
 
In this case the number of entries decreased by 46.1%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P2_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P2_file_dst27070.gif|200px]]<br>
 
 
 
=====2<P<2.5=====
 
 
 
In this case the number of entries decreased by 38%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P2.5_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P2.5_file_dst27070.gif|200px]]<br>
 
 
 
=====P>3=====
 
 
 
Used file dst27070(Energy 5.735 GeV and Torus 2250) and are applied the following EC cuts: For ECtotal - <math>EC_{tot}>0.24p</math>, for EC inner - <math>EC_{inner}>0.06p</math>.<br>
 
 
 
The number of entries decreased by~40.2%<br>
 
 
 
[[Image:e_total_vs_e_inner1_before_cuts_P3_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_e_inner1_after_cuts_P3_file_dst27070.gif|200px]]<br>
 
 
 
====Plot of EC_tot/P vs nphe for Electrons====
 
Used file dst27070(Energy 5.735 GeV and Torus 2250)<br>
 
=====p<3 GeV=====
 
The graphs below represents all electron candidates having a momentum smaller than 3 GeV.  Negatively charged pions are the most likely particle to be misidentified as an electrons by the tracking software.  A negatively charged pion having a momentum of 3 GeV would generate less than ?? photons in the cerenkov counter.  As a result the electron candidates which <math>n_{pe} < 1.xx </math> are thought to be misidentified pions.  The images which follow represent the effects of several cuts made for the purpose of removing misidentified particles.<br>
 
 
 
[[Image:e_total_vs_nphe_momentum_cut_file_dst27070.gif|200px]]<br>
 
 
 
Insert writeup on Cherenkov light for <math>e^-</math> and <math>\pi^-</math>
 
 
 
The number of photons produced per unit path length of a particle with charge ze and per unit energy interval of the photons is[http://pdg.lbl.gov/2007/reviews/passagerpp.pdf] <br>
 
 
 
<math>\frac{d^2 N}{dEdx}=\frac{\alpha z^2}{\hbar c}sin ^2 \theta_c=\frac{\alpha z^2}{\hbar c}[1-\frac{1}{\beta^2 n^2 (E)}]</math><br>
 
 
 
 
 
<math>\frac{d^2 N}{d\lambda dx} = \frac{2 \pi \alpha z^2}{\lambda^2}[1-\frac{1}{\beta^2 n^2 (\lambda)}]</math><br>
 
 
 
where <math>\theta_c</math> is the angle of Cerenkov radiation relative to the particle's direction, <math>\beta c</math> - the particle's velocity and n - index of refraction of the medium.<br>
 
 
 
<math>cos \theta_c=\frac{1}{n \beta}</math><br>
 
 
 
<math>\beta=\frac{v}{c}=\frac{pc}{\sqrt{(pc)^2 + (mc^2)^2}}</math><br>
 
 
 
after deriving the Taylor expansion of our function and considering only the first two terms, we get<br>
 
<math>\frac{d^2 N}{dEdx}=\frac{\alpha z^2}{\hbar c}sin ^2 \theta_c=\frac{\alpha z^2}{\hbar c}[\beta^2 n^2 (E) - 1]</math>
 
 
 
The gas used in the CLAS Cerenkov counter is perfluorobutane <math>C_4 F_{10}</math> with index of refraction equal to 1.00153. The threshold energy for pions is ~2.5 GeV and for electrons 9 MeV.  <br>
 
 
 
======PIONS=====
 
 
 
;Example for <math>\pi^-</math> <br>
 
 
 
<math>m_{\pi^-}=139.57[\frac{MeV}{c^2}]</math>, momentum <math>p=mv=3 [\frac{GeV}{c}]</math> and n=1.00153<br>
 
 
 
where <math>\frac{\alpha}{\hbar c}=370[ eV^{-1} cm^{-1}] </math><br>
 
 
 
<math>\frac{d^2 N}{dEdx}=370 \times 1 \times [(\frac{3 GeV}{\sqrt{(3 GeV)^2 + (0.13957 GeV)^2}})^2 \times 1.00153^2 - 1][\frac{1}{eV \times cm}]=0.3315 [eV^{-1} cm^{-1}] </math><br>
 
 
 
The Hall B cherenkov detector is <math>\sim \; 0.7</math> m thick radiator.  We assume the PMTs used to  collect light have a constant quantum efficiency of 8% for photons with wavelength between 300 and 600 nm.
 
 
 
<math>\frac{dN}{dx} = \frac{2 \pi \alpha z^2}{\lambda^2}[1-\frac{1}{\beta^2 n^2 (\lambda)}]=</math> <br>
 
<math>= 2 \pi \alpha z^2 [1-\frac{1}{\beta^2 n^2 (\lambda)}]\int_{300nm}^{600nm} \frac{1}{\lambda^2} d\lambda \times (0.08)=</math>  <br>
 
<math>= 2 \pi \alpha z^2 [1-\frac{1}{\beta^2 n^2 (\lambda)}] (\frac {1}{\lambda})|_{600nm}^{300nm} \times (0.08) </math>=<br>
 
<math>= 2\times 3.14 \times \frac{1}{137} \times 1^2 \times [1-\frac{1}{0.998919^2 \times 1.00153^2}] \times \frac{1}{600} \times 0.08 [nm^{-1}] = </math> <br>
 
<math>= 5.465 \times 10^{-9} [nm^{-1}]</math> <br>
 
 
 
;For the number of photons we have the following(for pions) <br>
 
<math> N = 5.465 \times 10^{-9} \times 0.7 m [\frac{10^9}{m}] = 3.8255 </math><br>
 
 
 
;chi_sqr for pions
 
 
 
[[Image:chi_sqr_27095_pions.gif|200px]]
 
 
 
;<math>\pi</math>_Momentum_vs_Number_of_Photons for pions(<math>\pi</math>)<br>
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||B>0||B<0
 
|-
 
| ||[[Image:numb_of_photons_vs_momentum_27095_pions_minus.gif|200px]]
 
|| [[Image:numb_of_photons_vs_momentum_26988_pions_minus.gif|200px]]
 
|-
 
!<math>\pi^+</math>||B>0||B<0
 
|-
 
| || [[Image:numb_of_photons_vs_momentum_27095_pions_plus.gif|200px]]
 
|| [[Image:numb_of_photons_vs_momentum_26988_pions_plus.gif|200px]]
 
|}
 
 
 
;Number_of_Photons for pions(<math>\pi</math>)<br>
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||B>0||B<0
 
|-
 
| ||[[Image:numb_photons_27095_pions_minus.gif|200px]]
 
|| [[Image:numb_photons_26988_pions_minus.gif|200px]]
 
|-
 
!<math>\pi^+</math>||B>0||B<0
 
|-
 
| || [[Image:numb_photons_27095_pions_plus.gif|200px]]
 
|| [[Image:numb_photons_26988_pions_plus.gif|200px]]
 
|}<br>
 
 
 
 
 
 
 
======ELECTRONS======
 
 
 
e_Momentum_vs_Number_of_Photoelectrons
 
 
 
{|border="2" colspan = "4"
 
!theory||B>0||B<0
 
|-
 
| ||[[Image:numb_of_photons_vs_momentum_27095_electrons_theory.gif|200px]]
 
|| [[Image:numb_of_photons_vs_momentum_26988_electrons_theory.gif|200px]]
 
|-
 
!experiment||B>0||B<0
 
|-
 
| || [[Image:numb_of_photons_vs_momentum_27095_exp.gif|200px]]
 
|| [[Image:numb_of_photons_vs_momentum_26988_exp.gif|200px]]
 
|}
 
 
 
=====p<3 GeV and <math>EC_{inner}>0.08p</math>=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_Ec_inner_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====p<3 GeV, <math>EC_{inner}>0.08p</math> and <math>EC_{tot}>0.2p</math>=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_EC_inner_EC_total_cuts_file_dst27070.gif|200px]]<br>
 
 
 
=====p<3 GeV, <math>EC_{inner}>0.08p</math>, <math>EC_{tot}>0.2p</math> and nphe>2.5=====
 
 
 
[[Image:e_total_P_vs_nphe_momentum_EC_inner_EC_total_nphe_cuts_file_dst27070.gif|200px]]<br>
 
 
 
====Plot of EC_total vs EC_inner====
 
 
 
In this case file dst28181_03.B00 was used(Energy 4.2 GeV and Torus +2250). The following cuts were applied:<math>EC_{inner}>0.005</math>, <math>EC_{tot}>0.2*p</math>, ec_chi_sqr<0.1 and nphe>3.<br>
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/sharon/ec_cut_4p2gev/Final_ec_cuts/Electron_cuts.html
 
[[Image:Etotal_vs_Einner_file_dst28181_03_before_cuts.gif|200px]]
 
[[Image:Etotal_vs_Einner_file_dst28181_03_after_cuts.gif|200px]]<br>
 
 
 
====Raster and vertex correction====
 
 
 
 
 
A raster calibration and a cut on the vertex distribution was made in order to select electrons from the polarized target, also the ones scattered from other materials in the beam path. A plot of the uncorrected vertex distribution is presented below for dst27070_02.B00 file(energy=5.7GeV  Torus=2250)<br>
 
 
 
[[Image:vertex_before_corrections_dst27070_file.gif|200px]]
 
 
 
==Pion==
 
 
 
===Summary Table===
 
 
 
Tamuna: 
 
The pion id code is at:
 
 
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pion.cc
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)||p>3,<math>EC_{tot}<0.2*p </math>,<math> EC_{inner}<0.08*p</math>(%)||p<3,<math>EC_{tot}<0.24*p </math>,<math> EC_{inner}<0.06*p</math>(%)
 
|-
 
| || || || || || || || ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||60||3.2
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||211||20
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||69||20.6
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||2620||15.2
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||56||19.4||36.1||31.5
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||130||13.6||25||43.8 
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||1210||20.2||39.8||32.4 
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||1709||19.9||22.5||46.4 
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||1509||15||34.6||32.9 
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||1189||10||25.2||44.3 
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||662||15.9||21.3||44
 
|}
 
 
 
===Table for Pions===
 
 
I used the pion id code(both subroutines):
 
 
 
http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pion.cc
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Begin Run||End Run ||file used || events remaining after cuts || || # trig(<math>10^6</math>) || expected # evts(<math>10^6</math>)
 
|-
 
| || || || || || first(%) || second(%)|| ||
 
|-
 
|1606||1500||25488||25559||dst25504_02.B00||96.8||99||60||3.2
 
|-
 
|1606||1500||25669||25732||dst25669_02.B00||98.1||98.9||226||10
 
|-
 
|1606||1500||25742||26221||dst25754_02.B00||13.4||22.8||3154||13.3
 
|-
 
|1606||-1500||26222||26359||dst26224_02.B00||11.3||15.3||703||13.1
 
|-
 
|1724||-1500||27644||27798||dst27649_02.B00||15.3||18.7||211||20
 
|-
 
|2288||1500||27205||27351||dst27225_02.B00||16.4||18.9||1647||16.1
 
|-
 
|2562||-1500||27799||27924||dst27809_02.B00||11.1||14.2||1441||13.1
 
|-
 
|2562||-1500||27942||27995||dst27942_02.B00||11.1||14.2||841||32.3
 
|-
 
|2562||1500||28001||28069||dst28002_02.B00||22.4||23.1||1013||30.7
 
|-
 
|2792||-1500||27936||27941||dst27937_02.B00||12.3||15.4||69||20.6
 
|-
 
|4239||2250||28074||28277||dst28075_02.B00||16.7||14.3||2278||19.6
 
|-
 
|4239||-2250||28280||28479||dst28281_02.B00||10.4||12.6||2620||15.2
 
|-
 
|4239||2250||28506||28510||dst28509_02.B00|| %|| %||75||18.1
 
|-
 
|5627||2250||27356||27364||dst27358_02.B00||40.5||40.8||56||19.4
 
|-
 
|5627||-2250||27366||27380||dst27368_02.B00||9.7||12.7||130||13.6 
 
|-
 
|5627||2250||27386||27499||dst27388_02.B00||14.1||15.5||1210||20.2
 
|-
 
|5735||-2250||26874||27068||dst26904_02.B00||12.1||14.5||1709||19.9 
 
|-
 
|5735||2250||27069||27198||dst27070_02.B00||19.5||22.9||1509||15
 
|-
 
|5764||-2250||26468||26722||dst26489_02.B00||9.6||13.3||1189||10
 
|-
 
|5764||-2250||26776||26851||dst26779_02.B00||10.3||13.9||662||15.9
 
|}
 
 
 
===Plot of EC_tot/P vs nphe for Pions===
 
 
 
[[Image:e_total_vs_nphe_pions_file_dst27070.gif|200px]]
 
[[Image:e_total_vs_nphe_electrons_file_dst27070.gif|200px]]
 
 
 
=Quality Checks=
 
== Run Summary Table ==
 
The table below uses a characteristic DST file to try and estimate the sample size for a semi-inclusive analysis of pion electroproduction.  The column marked "cuts" below indicates the number of events kept when the standard EC based electron identification cuts, described above, are used: <math>EC_{tot}>0.2*p </math> and <br><math> EC_{inner}>0.08*p</math>.  The next step will be to compare unpolarized pion production rates in order to evaluate the CLAS detectors efficiencies for measuring charged pions with different torus polarities.  The question is whether you get the same rates for negatively charged pions in one torus polarity to positively charged pions using the opposite torus polarity.
 
 
 
  Tamar: We need  a convention for choosing only one of the pions in events with
 
multiple pions.  I believe I chose the pion with the highest momentum before.
 
 
 
{|border="2" colspan = "20"
 
!Beam Energy||Torus Current||Target || Begin Run||End Run ||file used || # trig(<math>10^6</math>) || events remaining after <math>e^-</math> cuts(%)  || expected # evts(<math>10^6</math>)|| events remaining after <math>e^-</math> and <math>\pi^+</math> cuts(%) || expected # evts(<math>10^6</math>)|| events remaining after <math>e^-</math> and <math>\pi^-</math> cuts(%) || expected # evts(<math>10^6</math>)
 
|-
 
|4239||2250||NH3 || 28205||28277||/cache/mss/home/nguler/dst/dst28205_05.B00||1108.72||60.8||674.1||8.3||92.02||3.24||35.92
 
|-
 
|||||ND3 || 28074||28190||/cache/mss/home/nguler/dst/dst28187_05.B00||1117.87||59.6||666.25||7.99||89.32||3.3||36.9
 
|-
 
|||-2250||NH3 || 28407||28479||/cache/mss/home/nguler/dst/dst28409_05.B00||1013.57||24.2||245.28||0.12||1.22||0||0
 
|-
 
|||||ND3 || 28278||28403||/cache/mss/home/nguler/dst/dst28400_05.B00||1556.04||23.9||371.89||0.02||0.31||0.05||0.51
 
|-
 
|5735||2250|| NH3 ||27074||27195||/cache/mss/home/nguler/dst/dst27095_05.B00||1442.25||57.7||832.18||9.3||134.13||3.8||59.13
 
|-
 
||||| ND3 ||27116||27170||/cache/mss/home/nguler/dst/dst27141_05.B00||624.55||59.1||369.10||9.53||59.52||3.9||24.36
 
|-
 
|||-2250|| NH3 ||26911||27015||/cache/mss/home/nguler/dst/dst26988.B00||900.93||80.7||727.05||7.14||64.33||9.9||89.19
 
|-
 
||||| ND3 ||27022||27068||/cache/mss/home/nguler/dst/dst27055_05.B00|| 711.53||80||569.22||6.97||49.59||10.1||71.86
 
|-
 
 
 
|}
 
 
 
==Rates==
 
===Unpolarized Pion electroproduction===
 
==== Rates from other experiments in our Kinematic range====
 
 
 
[http://arxiv.org/abs/0709.1946 <math>\vec{e}p \rightarrow n \pi^+</math>  from CLAS]<br>
 
===== Center of Mass Frame Transformation=====
 
We have proton and electron. In the Lab frame electron is moving along the x-axis with momentum ;<math>\vec{p_e}</math> and proton is at rest. The 4-vectors are:<br>
 
;Lab Frame: <math>P_e=</math>(<math>E_e</math>,<math>p_e</math>,0,0) and for proton :<math>P_p=</math>(<math>m_p</math>,0,0,0)<br>
 
;CM Frame: :<math>{P_e}^{\prime}=</math>(<math>{E_e}^{\prime}</math>,<math>{p_e}^{\prime}</math>,<math>0</math>,<math>0</math>) and for proton :<math>{P_p}^{\prime}=</math>(<math>{E_p}^{\prime}</math>,<math>{p_p}^{\prime}</math>,<math>0</math>,<math>0</math>)<br>
 
 
:Find <math> \beta_{CM} </math> such that <math>P_{tot}^{CM}=0 =p_e^{\prime} + {p_p}^{\prime}</math><br>
 
 
:<math>\left ( \begin{matrix} {E_e}^{\prime} \\ p_e^{\prime} \\ 0 \\ 0 \end{matrix} \right )= \left [ \begin{matrix} \gamma  & -\gamma \beta & 0 & 0 \\ -\gamma \beta  & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0  &0 &0 & 1 \end{matrix} \right ] \left ( \begin{matrix} E_e \\ p_e \\ 0  \\ 0 \end{matrix} \right )</math><br>
 
 
 
 
 
:<math>\left ( \begin{matrix} {E_p}^{\prime} \\ p_p^{\prime} \\ 0 \\ 0 \end{matrix} \right )= \left [ \begin{matrix} \gamma  & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} m_p \\ 0 \\ 0  \\ 0 \end{matrix} \right )</math><br>
 
 
 
Using the last two equations we will get the following for x component:<br>
 
:<math>{p_e}^{\prime}=-\gamma_{cm}(\beta_{cm} E_e-p_e)</math><br>
 
 
 
:<math>p_p^{\prime} = - \gamma_{cm} \beta_{cm} m_p</math><br>
 
 
 
:<math> \gamma_{cm}(p_e - \beta_{cm} E_e)= \gamma_{cm} \beta_{cm} m_p </math><br>
 
 
 
:<math>\beta_{cm} = \frac {p_e}{m_p + E_e}</math><br>
 
 
 
;Example
 
:<math>p_e = 4.239 Gev \sim E_e</math> : electron mass is neglibible
 
:<math>m_p = 0.938 GeV</math> : Mass of a proton
 
:<math>\beta_{cm} = \frac{4.239}{5.177} = 0.819 < 1</math>
 
 
 
;Insert an example event with missing mass close to the proton mass ~ 1 GeV.
 
 
 
Found Event    3939492 with 3 Particles
 
Start Time=60.46
 
Raster= 3762    2417
 
TRIGBITS=16392
 
        Electron Momentum(x,y,z):-0.0183:-0.2849:0.414
 
DrForest p_id[1]=2
 
        Momentum(x,y,z):0.3127:0.6473:0.7845
 
DrForest p_id[2]=5
 
        Momentum(x,y,z):-0.4141:-0.3148:0.5887
 
 
 
 
 
:<math>\left ( \begin{matrix} {E_e}^{\prime} \\ p_{ex}^{\prime} \\  p_{ey}^{\prime} \\  p_{ez}^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \gamma_{cm}  & 0 & 0 & -\gamma_{cm} \beta_{cm} \\ 0 & 1 &0 &0 \\ 0 &0 &1 &0 \\ -\gamma_{cm} \beta_{cm} &0 &0 &\gamma_{cm}\end{matrix} \right ] \left ( \begin{matrix} E_e=0.5029 \\ -0.0183 \\ -0.2849  \\ 0.414 \end{matrix} \right )</math><br>
 
 
 
:<math>\left ( \begin{matrix} {E_p}^{\prime} \\ p_{px}^{\prime} \\  p_{py}^{\prime} \\  p_{pz}^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \gamma_{cm}  & 0 & 0 & -\gamma_{cm} \beta_{cm} \\ 0 & 1 &0 &0 \\ 0 &0 &1 &0 \\  -\gamma_{cm} \beta_{cm} &0 &0 & \gamma_{cm} \end{matrix} \right ] \left ( \begin{matrix} E_p = 1.4185 \\ 0.3127 \\ 0.6473  \\ 0.7845 \end{matrix} \right )</math><br>
 
 
 
:<math>\left ( \begin{matrix} {E_{\pi^-}}^{\prime} \\ p_{\pi^- x}^{\prime} \\  p_{{\pi^-} y}^{\prime} \\  p_{{\pi^-} z}^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \gamma_{cm}  & 0 & 0 & -\gamma_{cm} \beta_{cm} \\ 0 & 1 &0 &0 \\ 0 &0 &1 &0 \\ -\gamma_{cm} \beta_{cm} &0 &0 & \gamma_{cm} \end{matrix} \right ] \left ( \begin{matrix} E_{\pi^-} = 0.7979 \\ -0.4141 \\ -0.3148  \\ 0.5887 \end{matrix} \right )</math><br>
 
 
 
::<math>\beta_{cm} = \frac{4.239}{5.177} = 0.819</math><br>
 
:<math>\gamma_{cm} = \frac{1}{\sqrt{1 - \beta_{cm}^2}} = \frac{1}{\sqrt{1 - 0.819^2}} = 1.743</math><br>
 
 
 
 
 
;Electron:<math>\left ( \begin{matrix} {E_e}^{\prime} \\ p_{ex}^{\prime} \\  p_{ey}^{\prime} \\  p_{ez}^{\prime} \end{matrix} \right )=  \left ( \begin{matrix} 0.5029 \gamma_{cm} - 0.414 \gamma_{cm} \beta_{cm} \\ -0.0183 \\ -0.2849  \\ -0.5029 \gamma_{cm} \beta_{cm} + 0.414 \gamma_{cm} \end{matrix} \right ) = \left ( \begin{matrix} 0.2855 \\ -0.0183 \\ -0.2849  \\ 0.0037 \end{matrix} \right )</math><br>
 
 
 
;Proton:<math>\left ( \begin{matrix} {E_p}^{\prime} \\ p_{px}^{\prime} \\  p_{py}^{\prime} \\  p_{pz}^{\prime} \end{matrix} \right )= \left ( \begin{matrix} 1.4185\gamma_{cm} - 0.7845 \gamma_{cm} \beta_{cm}  \\ 0.3127 \\ 0.6473  \\-1.4185 \gamma_{cm} \beta_{cm} + 0.7845\gamma_{cm} \end{matrix} \right ) = \left ( \begin{matrix} 1.3525 \\ 0.3127 \\ 0.6473  \\ -0.6575 \end{matrix} \right )</math><br>
 
 
 
;<math>\pi^-</math>:<math>\left ( \begin{matrix} {E_{\pi^-}}^{\prime} \\ p_{\pi^- x}^{\prime} \\  p_{{\pi^-} y}^{\prime} \\  p_{{\pi^-} z}^{\prime} \end{matrix} \right )= \left ( \begin{matrix} 0.7979\gamma_{cm} - 0.5887 \gamma_{cm} \beta_{cm}  \\ -0.4141 \\ -0.3148  \\ -0.7979 \gamma_{cm} \beta_{cm} + 0.5887\gamma_{cm} \end{matrix} \right ) = \left ( \begin{matrix} 0.5504  \\ -0.4141 \\ -0.3148  \\ -0.1129 \end{matrix} \right )</math><br>
 
 
 
<math>\vec {P_{tot}}^{\prime} = (p_{ex}^{\prime} + p_{px}^{\prime} + p_{\pi^-x}^{\prime})\hat{x} + (p_{ey}^{\prime} + p_{py}^{\prime} + p_{\pi^-y}^{\prime})\hat{y} + (p_{ez}^{\prime} + p_{pz}^{\prime} + p_{\pi^-z}^{\prime})\hat{z} = -0.1197 \hat{x} + 0.0476 \hat{y} - 0.7667 \hat{z} </math><br>
 
 
 
=====Missing Mass=====
 
 
 
;Conservation of the 4-momentum gives us following<br>
 
 
 
<math>(P_e)^\mu + (P_p)^\mu = ({P_e}^{\prime})^\mu + ({P_X}^{\prime})^\mu + ({P_{\pi^-}}^{\prime})^\mu</math> <br>
 
<math>(P_e)_\mu + (P_p)_\mu = ({P_e}^{\prime})_\mu + ({P_X}^{\prime})_\mu + ({P_{\pi^-}}^{\prime})_\mu</math> <br>
 
 
 
 
 
;Solving it for the final proton state<br>
 
 
 
<math>W^2 = ({P_X}^{\prime})_\mu({P_X}^{\prime})^\mu = [(P_e)_\mu + (P_p)_\mu - ({P_e}^{\prime})_\mu - ({P_{\pi^-}}^{\prime})_\mu][(P_e)^\mu + (P_p)^\mu - ({P_e}^{\prime})^\mu - ({P_{\pi^-}}^{\prime})^\mu]</math><br>
 
 
 
 
 
;In our case 4-vectors for particles are<br>
 
 
 
<math>(P_e)_\mu = ( 4.2, 0, 0, 4.2 GeV)</math><br>
 
<math>(P_p)_\mu = (m_p, 0, 0, 0)</math><br>
 
<math>({P_e}^{\prime})_\mu = (0.5029, -0.0183, -0.2849, 0.414 )</math><br>
 
<math>({P_p}^{\prime})_\mu = (1.4185, 0.3127, 0.6473, 0.7845)</math><br>
 
<math>({P_{\pi^-}}^{\prime})_\mu = (0.7979, -0.4141, -0.3148, 0.5887)</math><br>
 
 
 
;Plug and chug<br>
 
 
 
<math>W^2 = [(4.2,0,0,4.2) + ( m_p, 0, 0, 0 ) - ( 0.5029,  -0.0183,  -0.2849,  0.414 ) - (0.7979, -0.4141, -0.3148,    0.5887)</math>] [<math>\left (\begin{matrix} 4.2  \\ 0 \\ 0  \\ 4.2 \end{matrix} \right )</math> + <math>\left (\begin{matrix} m_p  \\ 0 \\ 0  \\ 0 \end{matrix} \right) </math> - <math>\left (\begin{matrix} 0.5029  \\ -0.0183 \\ -0.2849  \\ 0.414 \end{matrix} \right) </math> - <math>\left ( \begin{matrix} 0.7979  \\ -0.4141 \\ -0.3148  \\ 0.5887 \end{matrix} \right) ] = 3.9 GeV^2</math>
 
 
 
 
 
<math>W = 1.97 GeV</math><br>
 
 
 
 
 
From [http://arxiv.org/abs/0709.1946 <math>\vec{e}p \rightarrow n \pi^+</math>  from CLAS]<br>
 
<math>{M_x}^2 = ((k_i + p_i) - (k_f + q_{\pi^-}))</math><br>
 
 
 
where <math>k_i</math> and <math>k_f</math> - are the 4-momentum of the incident and final electron, <math>p_i</math> - the 4-momentum of the target(proton),  <math>q_{\pi^-}</math> - the 4-vector of the <math>\pi^-</math>.<br>
 
 
 
Write equation for<math> \phi_{\pi}^{CM}</math> in terms of Lab frame Momentum and energy.
 
 
 
Graph <math>\phi_{\pi}^{CM}</math> for Pions hitting paddle #7.  The y-axis should be pion counting rate in units of pions per nanCoulomb.
 
 
 
==== Pion Rates -vs- Paddle for opposite sign Torus fields====
 
 
 
 
 
 
 
 
 
; using all events in which the first particle (the one which caused the trigger) is defined as an electrons and passes the
 
[http://www.iac.isu.edu/mediawiki/index.php/Analysis#Electron above electron cuts].
 
=====sc_paddle vs X_bjorken 5.7 GeV Beam Energy=====
 
 
 
{|border="2" colspan = "4"
 
!no cuts||cuts ||no cuts ||cuts
 
|-
 
|Electrons|| B > 0 ||  || B<0
 
|-
 
|[[Image:electrons_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^-</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^+</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_with_cuts.gif|200px]]
 
|}
 
 
 
=====sc_paddle vs X_bjorken with cuts 5.7 GeV Beam Energy(number of events=2)=====
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||<math>\pi^-</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_X_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_X_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|-
 
!<math>\pi^+</math>||<math>\pi^+</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_X_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_X_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|}
 
 
 
=====sc_paddle vs Momentum 5.7 GeV Beam Energy=====
 
 
 
There is a curvature problem.  When B > 0 then I expect the high momentum electrons to hit the lower
 
paddle numbers  (inbending).  I can see this when I look at the B>0 plot for electrons with cuts. 
 
When B < 0 then the electrons  are bending outwards which makes me expect the the higher momentum
 
electrons will high the higher numbered paddles.  I do not see this for B>0 with electron cuts.
 
 
 
{|border="2" colspan = "4"
 
!no cuts||cuts ||no cuts || cuts
 
|-
 
|Electons||B > 0  ||  || B<0
 
|-
 
|[[Image:electrons_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
||[[Image:electrons_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:electrons_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]
 
|-
 
|<math>\pi^-</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]<br>
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]<br>
 
|-
 
|<math>\pi^+</math>||B > 0 || || B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_with_cuts.gif|200px]]<br>
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_without_cuts.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_with_cuts.gif|200px]]<br>
 
|}
 
 
 
=====sc_paddle vs Momentum with cuts 5.7 GeV Beam Energy(number of events=2)=====
 
 
 
{|border="2" colspan = "4"
 
!<math>\pi^-</math>||<math>\pi^-</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^-_sc_paddle_vs_momentum_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^-_sc_paddle_vs_momentum_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|-
 
!<math>\pi^+</math>||<math>\pi^+</math>
 
|-
 
|B>0||B<0
 
|-
 
| [[Image:pions^plus_sc_paddle_vs_momentum_dst_27095_with_cuts_num_events_2.gif|200px]]
 
|| [[Image:pions^plus_sc_paddle_vs_momentum_dst_26988_with_cuts_num_events_2.gif|200px]]
 
|}
 
 
 
 
 
Used file dst26988_05.B00(Energy=5.7GeV and Torus=-2250)<br>
 
 
 
[[Image:f_cup_dst26988_05.gif|200px]]
 
[[Image:f_cup_int_dst26988_05.gif|200px]]
 
[[Image:number_of_pions_dst26988_05.gif|200px]]<br>
 
 
 
=====Electrons X -vs - paddle number when pion hits paddle 6 =====
 
 
 
Now ask which paddle the electrons hit as a function of X bjorken when we require<br> that the pion hits paddle #6.
 
 
 
===== Paddle 7 Rates and statistics=====
 
 
 
The number of events per trigger is measured for the respective DST file above and then the Total number events in the data set is estimated from that.
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>\pi^-</math>(B>0)|| || <math>\pi^+</math>(B<0)||
 
|-
 
|  ||  Total Number Events <math>(10^{3})</math> ||Number events per <math>10^6</math> triggers ||  Total Number Events <math>(10^{3})</math>|| Number events per  <math>10^6</math> trigger
 
|-
 
| 0.1 ||5.1 ||71 ||24.6 ||547
 
|-
 
| 0.2 ||6.9 ||96 ||13.7 ||305
 
|-
 
| 0.3 ||3.7 ||51 ||6.2 ||137
 
|-
 
| 0.4 ||3.3 ||45 ||2.7 ||60
 
|-
 
| 0.5 ||0.9 ||13 ||0.99 ||22
 
|-
 
|}
 
 
 
===== Paddle 17 Rates and statistics=====
 
 
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>\pi^-</math>(B<0)|| || <math>\pi^+</math>(B>0)||
 
|-
 
|  ||Total Number Events  <math>(10^{3})</math>||Number events per <math>10^{6}</math> trigger  ||Total Number Events <math>(10^{3})</math>||Number events per <math>10^{6}</math> trigger 
 
|-
 
| 0.1 ||6.2 ||137 ||4.6 ||64
 
|-
 
| 0.2 ||3.5 ||79 ||4.9 ||67
 
|-
 
| 0.3 ||1.7 ||39 ||2.6 ||36
 
|-
 
| 0.4 ||0.3 ||7 ||2.1 ||29
 
|-
 
| 0.5 ||0.1 ||2 ||0.6 ||8
 
|-
 
|}
 
 
 
===== Paddle 5 and 8 Rates and statistics for electrons=====
 
 
 
{|border="2" colspan = "5"
 
!<math>X_{bj}</math>||<math>e^-</math> sc_paddle=5 (B>0)|| ||<math>e^-</math> sc_paddle=8 (B<0)||
 
|-
 
|  ||  Total Number Events <math>(10^{3})</math>|| Number events per <math>10^{6}</math> trigger <math>(10^{3})</math>||Total Number Events <math>(10^{3})</math>||Number events per <math>10^{6}</math> trigger  <math>(10^{4})</math>
 
|-
 
| 0.1 ||384.9 ||5.314||1665.2 ||3.706
 
|-
 
| 0.2 ||382.5 ||5.282 ||977.8 ||2.176
 
|-
 
| 0.3 ||264.9 ||3.657 ||567.1 ||1.262
 
|-
 
| 0.4 ||159.5 ||2.202 ||328.6 ||0.7313
 
|-
 
| 0.5 ||99 ||1.367 ||218.2 ||0.4856
 
|}
 
 
 
=====Histograms for 5.7 GeV Beam Energy=====
 
 
 
{|border="2" colspan = "4"
 
!Electron energy/momentum||Electron Theta (<math>\theta</math>)  ||Electron Qsqrd  ||Electron X_bjorken
 
|-
 
|B>0 and sc_paddle=5||  ||  ||
 
|-
 
|[[Image:electrons_energy_momentum_dst_27095_with_cuts.gif|200px]]
 
||[[Image:electrons_theta_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_Qsqrd_dst_27095_with_cuts.gif|200px]]
 
|| [[Image:electrons_X_bjorken_dst_27095_with_cuts.gif|200px]]
 
|-
 
|B<0 and sc_paddle=8||  ||  ||
 
|-
 
|[[Image:electrons_energy_momentum_dst_26988_with_cuts.gif|200px]]
 
||[[Image:electrons_theta_dst_26988_with_cuts.gif|200px]]
 
|| [[Image:electrons_Qsqrd_dst_26988_with_cuts.gif|200px]]
 
|| [[Image:electrons_X_bjorken_dst_26988_with_cuts.gif|200px]]
 
|-
 
|}
 
 
 
=====Normalized X_bjorken for electrons=====
 
 
 
{|border="2" colspan = "4"
 
!B>0 and sc_paddle=5|| B<0 and sc_paddle=8   
 
|-
 
|[[Image:X_bjorken_electrons_with_cuts_sc_paddle_5_dst27095.gif|200px]]
 
||[[Image:X_bjorken_electrons_with_cuts__sc_paddle_8_dst26988.gif|200px]]
 
|}
 
 
 
:Pion Momentum
 
:Pion Scattering Angle
 
:Pion scint paddle number
 
 
 
Make plots using your new analysis code of <math>\phi</math>
 
 
 
==Asymmetries==
 
 
 
== Systematic Errors==
 
 
 
[[Media:SebastianSysErrIncl.pdf]]  Sebastian's Writeup
 

Latest revision as of 18:49, 13 January 2009