Difference between revisions of "DV RunGroupC Moller"

From New IAC Wiki
Jump to navigation Jump to search
 
(118 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
Simulating the Moller scattering background for EG12
 
Simulating the Moller scattering background for EG12
 +
=Docker=
 +
==[[Set up Docker Container]]==
 +
=[[DV_XSECT|Moller Differential Cross-Section]]=
  
 
=GEANT4 Simulation of Moller Events=
 
=GEANT4 Simulation of Moller Events=
  
==Simulation Setup==
+
== [[LH2 target|Simulation Setup]]==
Determine the Moller background using an [[LH2 target]] to check the physics in GEANT4
+
Use GEANT4 via GEMC to estimate the Moller background for electron scattering experiments in JLab's Hall B.  The first step towards this goal is to use GEANT4 without the GEMC infrastructure to create event (LUND) files that will be used as input events for GEMC.
  
==Distributions For LH2==
+
==[[DV_Moller_LH2 | Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using LH2]]==
  
===[[LH2 Momentum Lab|LH2 Momentum Distribution in the Lab Frame]]===
 
  
===[[LH2 Angular Distribution in the Lab Frame]]===
 
  
===[[LH2 Momentum distribution in the Center of Mass Frame|LH2 Momentum Distribution in the Center of Mass Frame]]===
+
===Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging LH2===
 
 
===[[LH2 Angular Distribution in the Center of Mass Frame]]===
 
 
 
==Comparing experimental vs. theoretical for Møller differential cross section 11GeV==
 
  
 
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
 
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
Line 27: Line 24:
 
[[Replacing the LH2 target with an NH3 target]]
 
[[Replacing the LH2 target with an NH3 target]]
  
==Distributions for NH3==
+
==[[DV_Moller_NH3|Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using NH3]]==
===[[NH3 Momentum Distribution in the Lab Frame]]===
 
  
===[[NH3 Angular Distribution in the Lab Frame]]===
+
==Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging NH3==
  
===[[NH3 Momentum Distribution in the Center of Mass Frame]]===
+
[[Converting to barns|Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.]]
  
===[[NH3 Angular Distribution in the Center of Mass Frame]]===
+
[[File:XSect_NH3.png|frame|center|alt=Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame|'''Figure 5c:''' The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.]]
  
 
==LH2 Vs. NH3==
 
==LH2 Vs. NH3==
 +
===[[DV_Moller_NH3_LH2|Benchmark GEANT4's Moller scattering prediction for NH3 and LH2]]===
  
===[[Comparing Momentum Distribution in the Lab Frame]]===
 
 
===[[Comparing Angular Distribution in the Lab Frame]]===
 
 
===[[Comparing Momentum Distribution in the Center of Mass Frame]]===
 
 
===[[Comparing Angular Distribution in the Center of Mass Frame]]===
 
  
 
==Effects Due to Target Material==
 
==Effects Due to Target Material==
Line 54: Line 44:
 
==[[Calculating the differential cross-sections for the different materials, and placing them as well as the theoretical differential cross-section into a plot:|Differential Cross-Section Offset]]==
 
==[[Calculating the differential cross-sections for the different materials, and placing them as well as the theoretical differential cross-section into a plot:|Differential Cross-Section Offset]]==
  
=Reconstruction of Moller Events=
+
[[File:Adjusted_MollerXSect_NH3.png‎|frame|center|alt=Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame|'''Figure 5c:''' The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.  The theoretical differential cross-section has been adjusted to account for the 10 electrons within NH3.]]
 
 
==[[DV_Creating_LUND_Files|Creating LUND Files]]==
 
  
==[[DV_Running_GEMC|Running GEMC]]==
+
[[ROOT Macro to read LUND files and make plots]]
  
==[[DV_Running_Reconstruction|Running Reconstruction Simulations]]==
 
  
==[[DV_Analyze_Recon|Analyzing Reconstruction Data]]==
+
<center>[[File:LUND_MolMomCM.png]][[File:LUND_MolThetaCM.png]]</center>
  
=Reconstruction of Random Within Certain Range=
 
==Modified gcards==
 
  
=Effects of Solenoid on Moller Electrons=
+
<center>[[File:LUND_MolMomLab.png]][[File:LUND_MolThetaLab.png]]</center>
  
=Cover Full Solid Angle of Detector=
 
  
==[[Calculations of 4-momentum components]]==
+
Run the above theta and E distribution of Mollers through GEMC with and without Solenoid on.  Determine the Theta and E range of Mollers that enter the detector.
  
===Setup===
 
Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range.  A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV.  Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data.  This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section.  This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.
 
  
===Prepare Data===
+
Scanning from 2MeV to 5500MeV, and 0 to 36 degrees in Theta.
  
Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:
+
For Solenoid on with 5T:
  
 
<pre>
 
<pre>
awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat
+
<gcard>
</pre>
 
  
===Transfer to CM Frame===
+
        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ctof/ctof"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/ftof/ftof"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/htcc/htcc"            factory="TEXT" variation="original"/>
 +
        <detector name="../../../../../clas12/pcal/pcal"            factory="TEXT" variation="original"/>
 +
        <option name="BEAM_P"  value="e-, 2.800*GeV, 18.0*deg, 10*deg"/>
 +
        <option name="SPREAD_P" value="2.798*GeV, 18*deg, 180*deg"/>
 +
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
 +
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
 +
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
 +
        <option name="OUTPUT" value="evio,eg12.ev"/>
  
Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.
+
</gcard>
  
Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.
+
</pre>
  
[[Relativistic Kinematics]]
+
Using the standard commands for gemc
  
For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.
+
<pre>
 +
gemc -USE_GUI=0 -N=1000 eg12_sol.gcard
 +
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=-1.0 -config DCHB::solenoid=1.0 -config DCTB::kalman=true -o eg12_rec.ev -s DCHB:DCTB:EC:FTOF:EB
 +
~/src/CLAS/coatjava-1.0/bin/run-groovy Analysis.groovy eg12_rec.0.evio
 +
</pre>
  
<center>[[File:MolEThetaCM_500.png]]</center>
 
  
Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle.  This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area
+
Checking for a reconstructed particle that undergoes a phi shift where the 1st column is energy and the 2nd the scattering angle theta:
 +
<pre>
 +
For Energy:
 +
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
 +
289    0.6624017631112946      33.37507824033966      -179.63657653407975    0.7254709      29.696417      -177.79057      473.36051689004984      11.978802748439216      -129.55774724876173
  
===Run for Necessary Amount to match Cross Section===
 
<center>[[File:Combo3.png‎]]</center>
 
  
Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a [[known Moller differential cross section]].
+
awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
 +
978    5.584765946130235      24.90893565820338      -170.69784116534063    5.593401        24.90894        -170.65994      472.16552666546283      23.31807917059094      -165.11125601370114
  
 +
For Theta:
 +
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
 +
12      4.83485521395583        10.577021312967325      -50.86708775351051      4.8205996      10.617784      -50.895683      491.627055439108        5.9032309421001985      -43.82964507576243
  
{| class="wikitable" align="center" border=1
+
awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
|-
+
187    1.3382869250001856      35.63598792463312      29.887530073265214      1.3481133      35.449417      30.009071      472.455052447561        19.034043420497742      55.20328358414997
! Theta (degrees)
+
</pre>
! Number of events
 
  
|-
 
| 90
 
| 5
 
  
|-
+
Similarly for 0T:
| 100
+
<pre>
| 5
+
For Energy:
 +
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
 +
148    0.36418038435234207    33.68296595663359      -175.89942431595827    0.35383263      51.743824      -39.45801      469.5694572319308      24.353383233947522      -176.27025218702502
  
|-
 
| 110
 
| 6
 
  
|-
+
awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
| 120
+
818    5.5278794590742235      12.937136966282836      -43.35663621477178      5.539351        12.95216        -49.09295      484.8800252169308      8.27731670021694        -43.245753766203364
| 8
 
  
|-
+
For Theta:
| 130
+
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
| 12
+
559    4.909449160222199      9.918634647646794      0.06548256930681198    4.914272        9.938521        -5.861595      492.1448533455858      7.501204563534799      -0.006721611135017764
  
|-
+
awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
| 135
+
326    1.272966353429713      35.731680814303196      85.3173707349696        1.2830343      38.27654        58.368687      483.4835073848272      3.950855595379657      83.87603767806992
| 20
+
</pre>
  
|-
+
=Reconstruction of Moller Events=
| 140
 
| 28
 
  
|-
+
==[[DV_Creating_LUND_Files|The LUND format]]==
| 142
 
| 30
 
  
|-
+
==[[DV_Running_LUND_for_Moller_Distribution|Writing LUND files]]==
| 144
 
| 40
 
  
|-
+
==[[DV_Running_GEMC|Running GEMC]]==
| 146
 
| 45
 
  
|-
+
==[[DV_Analyze_Recon|Phi Shift observation using DC hit Reconstruction Data]]==
| 148
 
| 55
 
  
|-
+
=Gcard creation defining energy and angle range of electrons=
| 150
+
==[[Modified gcards]]==
| 70
 
  
|-
+
=Effects of Solenoid on Electrons=
| 152
+
==[[Results for known Moller events|Results for defined distribution in Solenoid Fields]]==
| 80
 
  
|-
+
==[[Results for Random Spread of Energy and angle theta in the Lab frame]]==
| 154
 
| 100
 
|}
 
  
We can set up conditional statements to check what range the Theta angle falls in, then by dividing
+
=Cover Full Solid Angle of Detector=
  
<center><math>\Delta \phi=\frac {2\pi}{number\ of\ events}</math></center>
+
==Using GEANT simulation data==
 +
===[[Calculations of 4-momentum components]]===
  
we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.
+
===[[Alter Phi Angles]]===
  
<center>[[File:UniformPhi.png]]</center>
+
===[[Check Differential Cross-Section]]===
  
===Alter Phi Angles===
 
  
From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above.  Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created.  Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created.  Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created.  Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller.
 
[[Altering Phi Angles]]
 
  
  
Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles (<math>\theta = 0, \phi = 0</math>).  From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron.  With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame.  In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.
+
==Detector Occupancy==
  
10 separate trials were run for 10,000 events each.
+
clas12->Draw("Detector.wire:Detector.layer>>(7,1,7,120,0,120)","Detector.superlayer<3","colz")
The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:
 
  
<pre>hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root</pre>
+
===[[gcard settings for daughter and procID|Gcard settings]]===
  
The Phi distribution for the CM and Lab frame.
+
===[[Verfication of Mother/Daughter Occupancy]]===
  
 +
===[[Benchmark GEMC Occupancy Prediction for 11GeV Electron Beam with 0T Solenoid for LH2]]===
  
[[File:MolPhiLab.png]][[File:MolPhiCM.png]]
 
  
 +
===[[Setup for Batch Job With Varying Experimental CLAS12 Quantities]]===
 +
===[[Run_in_GEMC]]===
 +
===[[Center_of_Mass_for_Stationary_Target]]===
  
Their LUND files were combined using
+
===[[Run Occupancy for Sector 1 DC hits]]===
 +
 
 +
===[[Wire_angle_correspondance]]===
 +
===[[Isotropic Weighted Moller Distribution in GEMC]]===
  
<pre>cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND</pre>
+
=Papers used=
  
resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries.  This was divided into 177 file parts of 75000 each.  The first set from the original data set is shown below. 
+
[1]Farrukh Azfar's Derivation of Moller Scattering
  
<pre>split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_</pre>
+
:::[[File:FarrukAzfarMollerScatter.pdf]]
  
 +
A polarized target for the CLAS detector
  
<center>[[File:File1of177.png]]</center>
+
:::[[File:PHY02-33.pdf‎]]
  
It was shown earlier that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b</math>
+
An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons
  
For an Ammonia target:
+
:::[[:File:1819.pdf]]
:::::<math>\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times  \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns</math>
 
  
 +
==QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering==
 +
http://arxiv.org/abs/1602.07609
  
If the beam had 4E9 incident electrons, the differential cross-section would be found with,
+
[[File:ChangingRates_S1_PhiThetaHits.png | 600 px]]
  
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b</math>
+
[[File:S1_50nA_PrimaryElectronSigmasWeightedRates.png | 600 px]]
  
Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed.  Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.
+
[[File:S1_PhiThetaGammaHits.png | 600 px]]
  
{| border=1
 
  |+ Moller Events per Incident Electrons
 
|-
 
  ! # of Incident Electrons
 
  ! # of Moller Events
 
  ! # of E>500MeV
 
|-
 
  | 1e6
 
  | 38343
 
  | 134
 
|-
 
  | 1e7
 
  | 383633
 
  | 1490
 
|-
 
  | 4e9
 
  | 12444898
 
  | 48548
 
|}
 
  
 +
[[File:HitMakeUp.png]]
  
  
This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV.  Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.
+
[[File:S1_50nA_PrimaryElectronSigmasWeightedRates_Full.png | 600 px]]
  
Using the same expression, but this time for 4e10 incident electrons,
+
[[File:ComparingOppositeFields_S1_PhiThetaHits.png | 800 px]]
  
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b</math>
 
  
Rebining the histogram to account for the unequal weighting of the bins outlined in the table above
+
[[File:ChangingSolenoidRates_wo_Magnets.png|800 px]]
  
<pre>TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
 
Combo->Add(MolThetaCM,8.87e-10);
 
Combo->Draw();
 
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
 
hnew=Combo->Rebin(15,"hnew",Bins);
 
hnew->Draw();
 
Theory->Draw("same");</pre>
 
  
 +
[[File:ComparingDCcomponents_S1_PhiThetaHits.png| 800 px]]
  
[[File:Extended_DiffXSect_TheoryExperiment.png]]
 
  
===Running LUND files in GEMC===
 
  
Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;
+
[[File:ComparingDCEndplates_S1_PhiThetaHits.png | 800 px]]
  
Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.
 
  
 +
[[File:ComparingMagnetComponents_S1_PhiThetaHits.png| 800 px]]
  
'''1)'''Once the LUND file is broken into 178 parts, they can have the LUND extension added by:
+
[[File:S1_PhiThetaGammaHits_Full.png | 600 px]]
  
<pre>prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*</pre>
 
  
Placing each of these files into its own directory, within a directory named Phi_Parts
 
  
<pre>find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;</pre>
 
  
 +
Tomography
  
'''2)'''Creating the submit directory, and using a c++ program, creating the needed 178
+
[[File:S1_PhiThetaGammaVertex_wo_MagnetComponents.png | 600 px]]
  
<pre>#include <iomanip>
 
#include <sstream>
 
#include <iostream>
 
#include <fstream>
 
  
using namespace std;
+
=GEANT4 Simulation of Lead Conic Moller Shield=
 +
==[[Lead Shield Cone]]==
  
void submit() {
+
====OLD====
 +
{| class="wikitable"
 +
|+ FTOn from Forward Vertex
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_36_38_R2_36_38
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
        for(int a=0;a<2;a++)
+
|}
        {
+
{| class="wikitable"
                for(int b=0;b<10;b++)
+
|+ OLD! FTOn from 0,0,0 Vertex
                {
+
! 50nA
                        for(int c=0;c<10;c++)
+
! S1R1 2ndryMoller e- rate
                        {
+
! S1R1 2ndryMoller gamma rate
                                string filename="submit0";
+
! S1R1 2ndryMoller particle rate
                                stringstream hundreds;
+
! Effective Shield Rate
                                        hundreds << a;
+
|-
                                stringstream tens;
+
! R1_36_38_R2_36_38
                                        tens << b;
+
| 405 Hz
                                stringstream ones;
+
| 15480 Hz
                                        ones << c;
+
| 160 Hz
                                string fullname="";
+
| ?
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
+
|-
                        //              cout << fullname << "\n";
+
! R1_36_38_R2_50_52
                       
+
| 470 Hz
                                ofstream myfile;
+
| 15227 Hz
                                myfile.open(fullname.c_str());
+
| 146 Hz
                               
+
| ?
                               
+
|-
                                myfile << "#!/bin/sh\n";
+
! R1_36_38_R2_70_72
                                myfile << "#PBS -l nodes=1\n";
+
| 461 Hz
                                myfile << "#PBS -A FIAC\n"; 
+
| 15045 Hz
                                myfile << "#PBS -M vanwdani@isu.edu\n";
+
| 150 Hz
                                myfile << "#PBS -m abe\n";
+
| ?
                                myfile << "#\n";
+
|-
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
+
! R1_36_38_R2_75_77
                                myfile << "tcsh\n";
+
| 372 Hz
                                myfile << "source setup\n";
+
| 14916 Hz
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
+
| 130 Hz
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
+
| ?
                                        myfile <<a<<b<<c<<"\n";
+
|-
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
+
! R1_36_38_R2_80_82
                                        myfile <<a<<b<<c;
+
| 376 Hz
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
+
| 14995 Hz
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
+
| 109 Hz
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
+
| ?
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
+
|-
                               
+
! R1_36_38_R2_90_92
                               
+
| 413 Hz
                                myfile.close();
+
| 14580 Hz
                        }
+
| 119 Hz
                }
+
| ?
        }
+
|-
       
+
! R1_36_38_R2_95_97
}</pre>
+
| 383 Hz
 
+
| 14186 Hz
 +
| 117 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_111_113
 +
| 447 Hz
 +
| 14196 Hz
 +
| 109 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_116_118
 +
| 420 Hz
 +
| 14167 Hz
 +
| 144 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_121_123
 +
| 389 Hz
 +
| 14251 Hz
 +
| 117 Hz
 +
| ?
 +
|-
 +
! R1_74_76_R2_151_153
 +
| 492 Hz
 +
| 14280 Hz
 +
| 110 Hz
 +
| ?
 +
|-
 +
! R1_36_38_R2_500_503
 +
| 1000 Hz
 +
| 18363 Hz
 +
| 120 Hz
 +
| ?
 +
|}
  
This creates the submitXXXX file
+
{| class="wikitable"
 +
|+ FTOn from (0,0,0) Vertex w/o FT
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_0_524.0_R2_0_1034.47
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
<pre>#!/bin/sh
+
|}
#PBS -l nodes=1
 
#PBS -A FIAC
 
#PBS -M vanwdani@isu.edu
 
#PBS -m abe
 
#
 
cd /home/lds/src/CLAS/GEMC
 
tcsh
 
source setup
 
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
 
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
 
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
 
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
 
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio
 
 
 
</pre>
 
 
 
 
 
Creating a file named lds-submit
 
 
 
[[File:Screen_Shot_2016-03-15_at_2.36.26_PM.png]]
 
 
 
----
 
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]
 
 
 
=Papers used=
 
 
 
[1]Farrukh Azfar's Derivation of Moller Scattering
 
 
 
:::[[File:FarrukAzfarMollerScatter.pdf]]
 
 
 
A polarized target for the CLAS detector
 
 
 
:::[[File:PHY02-33.pdf‎]]
 
 
 
An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons
 
 
 
:::[[:File:1819.pdf]]
 
 
 
==QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering==
 
http://arxiv.org/abs/1602.07609
 
  
 +
{| class="wikitable"
 +
|+ FTOn from Forward Vertex
 +
! 50nA
 +
! S1R1 2ndryMoller e- rate
 +
! S1R1 2ndryMoller gamma rate
 +
! S1R1 2ndryMoller particle rate
 +
! Effective Shield Rate
 +
|-
 +
! R1_36_38_R2_36_38
 +
| ?
 +
| ?
 +
| ?
 +
| ?
  
 +
|}
  
  
 +
[[VanWasshenova_Thesis]]
  
 
[[EG12]]
 
[[EG12]]

Latest revision as of 18:03, 13 January 2019

need to insert moller shielding into card after moller LUND file is created. (see clas12/beamline)

Simulating the Moller scattering background for EG12

Docker

Set up Docker Container

Moller Differential Cross-Section

GEANT4 Simulation of Moller Events

Simulation Setup

Use GEANT4 via GEMC to estimate the Moller background for electron scattering experiments in JLab's Hall B. The first step towards this goal is to use GEANT4 without the GEMC infrastructure to create event (LUND) files that will be used as input events for GEMC.

Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using LH2

Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging LH2

Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.

Experimental and Theoretical Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The experimental and theoretical Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference.

Change to a NH3 Target

Replacing the LH2 target with an NH3 target

Benchmark GEANT4's Moller scattering prediction with the theoretical cross section using NH3

Comparison of simulation vs. the theoretical Møller differential cross section using 11 GeV electrons impinging NH3

Converting the number of scattered electrons per scattering angle theta to a differential cross-section in barns.

Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target.

LH2 Vs. NH3

Benchmark GEANT4's Moller scattering prediction for NH3 and LH2

Effects Due to Target Material

Target Density

Atomic Mass and Electron Number Effects

Differential Cross-Section Offset

Theoretical and Simulated Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5c: The theoretical and simulated Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference for NH3 target. The theoretical differential cross-section has been adjusted to account for the 10 electrons within NH3.

ROOT Macro to read LUND files and make plots


LUND MolMomCM.pngLUND MolThetaCM.png


LUND MolMomLab.pngLUND MolThetaLab.png


Run the above theta and E distribution of Mollers through GEMC with and without Solenoid on.  Determine the Theta and E range of Mollers that enter the detector.


Scanning from 2MeV to 5500MeV, and 0 to 36 degrees in Theta.

For Solenoid on with 5T:

<gcard>

        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ctof/ctof"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/ftof/ftof"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/htcc/htcc"            factory="TEXT" variation="original"/>
        <detector name="../../../../../clas12/pcal/pcal"            factory="TEXT" variation="original"/>
        <option name="BEAM_P"   value="e-, 2.800*GeV, 18.0*deg, 10*deg"/>
        <option name="SPREAD_P" value="2.798*GeV, 18*deg, 180*deg"/>
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
        <option name="OUTPUT" value="evio,eg12.ev"/>

</gcard>

Using the standard commands for gemc

gemc -USE_GUI=0 -N=1000 eg12_sol.gcard
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=-1.0 -config DCHB::solenoid=1.0 -config DCTB::kalman=true -o eg12_rec.ev -s DCHB:DCTB:EC:FTOF:EB
~/src/CLAS/coatjava-1.0/bin/run-groovy Analysis.groovy eg12_rec.0.evio


Checking for a reconstructed particle that undergoes a phi shift where the 1st column is energy and the 2nd the scattering angle theta:

For Energy:
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
289     0.6624017631112946      33.37507824033966       -179.63657653407975     0.7254709       29.696417       -177.79057      473.36051689004984      11.978802748439216      -129.55774724876173


awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
978     5.584765946130235       24.90893565820338       -170.69784116534063     5.593401        24.90894        -170.65994      472.16552666546283      23.31807917059094       -165.11125601370114

For Theta:
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
12      4.83485521395583        10.577021312967325      -50.86708775351051      4.8205996       10.617784       -50.895683      491.627055439108        5.9032309421001985      -43.82964507576243

awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
187     1.3382869250001856      35.63598792463312       29.887530073265214      1.3481133       35.449417       30.009071       472.455052447561        19.034043420497742      55.20328358414997


Similarly for 0T:

For Energy:
awk 'NR == 1 {line =$0; min =$2} NR >1 && $2 < min {line =$0; min = $2} END{print line}' Energy_Phi_Shift.dat
148     0.36418038435234207     33.68296595663359       -175.89942431595827     0.35383263      51.743824       -39.45801       469.5694572319308       24.353383233947522      -176.27025218702502


awk 'NR == 1 {line =$0; max =$2} NR >1 && $2 > max {line =$0; max = $2} END{print line}' Energy_Phi_Shift.dat
818     5.5278794590742235      12.937136966282836      -43.35663621477178      5.539351        12.95216        -49.09295       484.8800252169308       8.27731670021694        -43.245753766203364

For Theta:
awk 'NR == 1 {line =$0; min =$3} NR >1 && $3 < min {line =$0; min = $3} END{print line}' Energy_Phi_Shift.dat
559     4.909449160222199       9.918634647646794       0.06548256930681198     4.914272        9.938521        -5.861595       492.1448533455858       7.501204563534799       -0.006721611135017764

awk 'NR == 1 {line =$0; max =$3} NR >1 && $3 > max {line =$0; max = $3} END{print line}' Energy_Phi_Shift.dat
326     1.272966353429713       35.731680814303196      85.3173707349696        1.2830343       38.27654        58.368687       483.4835073848272       3.950855595379657       83.87603767806992

Reconstruction of Moller Events

The LUND format

Writing LUND files

Running GEMC

Phi Shift observation using DC hit Reconstruction Data

Gcard creation defining energy and angle range of electrons

Modified gcards

Effects of Solenoid on Electrons

Results for defined distribution in Solenoid Fields

Results for Random Spread of Energy and angle theta in the Lab frame

Cover Full Solid Angle of Detector

Using GEANT simulation data

Calculations of 4-momentum components

Alter Phi Angles

Check Differential Cross-Section

Detector Occupancy

clas12->Draw("Detector.wire:Detector.layer>>(7,1,7,120,0,120)","Detector.superlayer<3","colz")

Gcard settings

Verfication of Mother/Daughter Occupancy

Benchmark GEMC Occupancy Prediction for 11GeV Electron Beam with 0T Solenoid for LH2

Setup for Batch Job With Varying Experimental CLAS12 Quantities

Run_in_GEMC

Center_of_Mass_for_Stationary_Target

Run Occupancy for Sector 1 DC hits

Wire_angle_correspondance

Isotropic Weighted Moller Distribution in GEMC

Papers used

[1]Farrukh Azfar's Derivation of Moller Scattering

File:FarrukAzfarMollerScatter.pdf

A polarized target for the CLAS detector

File:PHY02-33.pdf

An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons

File:1819.pdf

QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering

http://arxiv.org/abs/1602.07609

ChangingRates S1 PhiThetaHits.png

S1 50nA PrimaryElectronSigmasWeightedRates.png

S1 PhiThetaGammaHits.png


HitMakeUp.png


S1 50nA PrimaryElectronSigmasWeightedRates Full.png

ComparingOppositeFields S1 PhiThetaHits.png


ChangingSolenoidRates wo Magnets.png


ComparingDCcomponents S1 PhiThetaHits.png


ComparingDCEndplates S1 PhiThetaHits.png


ComparingMagnetComponents S1 PhiThetaHits.png

S1 PhiThetaGammaHits Full.png



Tomography

S1 PhiThetaGammaVertex wo MagnetComponents.png


GEANT4 Simulation of Lead Conic Moller Shield

Lead Shield Cone

OLD

FTOn from Forward Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 ? ? ? ?
OLD! FTOn from 0,0,0 Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 405 Hz 15480 Hz 160 Hz ?
R1_36_38_R2_50_52 470 Hz 15227 Hz 146 Hz ?
R1_36_38_R2_70_72 461 Hz 15045 Hz 150 Hz ?
R1_36_38_R2_75_77 372 Hz 14916 Hz 130 Hz ?
R1_36_38_R2_80_82 376 Hz 14995 Hz 109 Hz ?
R1_36_38_R2_90_92 413 Hz 14580 Hz 119 Hz ?
R1_36_38_R2_95_97 383 Hz 14186 Hz 117 Hz ?
R1_36_38_R2_111_113 447 Hz 14196 Hz 109 Hz ?
R1_36_38_R2_116_118 420 Hz 14167 Hz 144 Hz ?
R1_36_38_R2_121_123 389 Hz 14251 Hz 117 Hz ?
R1_74_76_R2_151_153 492 Hz 14280 Hz 110 Hz ?
R1_36_38_R2_500_503 1000 Hz 18363 Hz 120 Hz ?
FTOn from (0,0,0) Vertex w/o FT
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_0_524.0_R2_0_1034.47 ? ? ? ?
FTOn from Forward Vertex
50nA S1R1 2ndryMoller e- rate S1R1 2ndryMoller gamma rate S1R1 2ndryMoller particle rate Effective Shield Rate
R1_36_38_R2_36_38 ? ? ? ?


VanWasshenova_Thesis

EG12