Difference between revisions of "Test for Theta at 20 degrees and Phi at 0"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
====Test for <math>\theta=20</math> and <math>\phi=0</math>====
+
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[Determing_Elliptical_Equations|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[In_the_Detector_Plane|<math>\vartriangleright </math>]]
 +
 
 +
</center>
 +
 
 +
 
 +
=Test for <math>\theta=20</math> and <math>\phi=0</math>=
  
  
Line 145: Line 154:
  
  
=[[Determing_Elliptical_Equations|<-Back]]=
+
----
 +
 
 +
 
 +
 
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[Determing_Elliptical_Equations|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[In_the_Detector_Plane|<math>\vartriangleright </math>]]
  
=[[In_the_Detector_Plane|Forward->]]=
+
</center>

Latest revision as of 20:24, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Test for [math]\theta=20[/math] and [math]\phi=0[/math]

Solving for the components of the ellipse

[math]a_1=\frac{2.53sin(\theta)}{sin(115-\theta)}=\frac{2.53sin(20^{\circ})}{sin(115^{\circ}-20^{\circ})}=\frac{2.53\cdot.342}{.9962}=.8686[/math]


[math]a_2=\frac{2.53sin(\theta)}{sin(65-\theta)}=\frac{2.53sin(20^{\circ})}{sin(65^{\circ}-20^{\circ})}=\frac{2.53\cdot.342}{.0872}=1.2237[/math]


[math]c_{ellipse} \equiv (-\Delta a\ sin(65^{\circ}), 0,z+\Delta a\ cos(65^{\circ}))[/math]


[math]c_{ellipse} \equiv (-\frac{a_2-a_1}{2} sin(65^{\circ}), 0,2.53+\frac{a_2-a_1}{2} cos(65^{\circ}))[/math]


[math]c_{ellipse} \equiv (-\frac{1.2237-.8686}{2} sin(65^{\circ}), 0,2.53+\frac{1.2237-.8686}{2} cos(65^{\circ}))[/math]


[math]c_{ellipse} \equiv (-\frac{.3550}{2} sin(65^{\circ}), 0,2.53+\frac{.3550}{2} cos(65^{\circ}))[/math]


[math]c_{ellipse} \equiv (-.1775 sin(65^{\circ}), 0,2.53+.1775 cos(65^{\circ}))[/math]


[math]c_{ellipse} \equiv (-.1609, 0,.0750)[/math]


[math]P(\phi=0) \equiv (-\frac{a_2-a_1}{2} sin(65^{\circ})+\frac{a_1+a_2}{2} sin((65^{\circ}), 0,2.53+\frac{a_2-a_1}{2} cos(65^{\circ})-\frac{a_1+a_2}{2} cos(65^{\circ}))[/math]


[math]P(\phi=0) \equiv (-\frac{1.2234-.8684}{2} sin(65^{\circ})+\frac{.8684+1.2234}{2} sin((65^{\circ}), 0,2.53+\frac{1.2234-.8684}{2} cos(65^{\circ})-\frac{.8684+1.2234}{2} cos(65^{\circ}))[/math]


[math]P(\phi=0) \equiv (-\frac{.3550}{2} sin(65^{\circ})+\frac{2.0918}{2} sin((65^{\circ}), 0,2.53+\frac{.3550}{2} cos(65^{\circ})-\frac{2.0918}{2} cos(65^{\circ}))[/math]


[math]P(\phi=0) \equiv (-.1775 sin(65^{\circ})+1.0459 sin((65^{\circ}), 0,2.53+.1775 cos(65^{\circ})-1.0459 cos(65^{\circ}))[/math]


[math]P(\phi=0) \equiv (.7870, 0,2.1623)[/math]


[math]x=\frac{2.53cos(\phi)}{cot(\theta)+cos(\phi)cot(65^{\circ})}[/math]


[math]x=\frac{2.53cos(0)}{cot(20^{\circ})+cos(0)cot(65^{\circ})}[/math]


[math]x=\frac{2.53}{2.7475+.4663}[/math]


[math]x=\frac{2.53}{3.2138}=.7870\text{cm}[/math]


The y component is zero for [math]\phi=0[/math]

The z component can be found from the ellipse equation

[math]z=-cot(65^{\circ})x+2.53=-cot(65^{\circ})(.7870)+2.53=2.1623\ \text{cm}[/math]


[math]e\equiv \frac{sin(25^{\circ})}{cos(20^{\circ})}=0.96447[/math]


[math]r_{D1}=R_{Lower\ Dandelin}cos(\theta)=(ae-\Delta a) tan(65^{\circ})cos(\theta)\qquad \qquad r_{D2}=R_{Lower\ Dandelin}cos(\theta)=(ae+\Delta a) tan(65^{\circ})cos(\theta)[/math]


[math]r_{D1}=(\frac{a_1+a_2}{2}e-\frac{a_2-a_1}{2}) tan(65^{\circ})cos(\theta)\qquad \qquad r_{D2}=(\frac{a_1+a_2}{2}e+\frac{a_2-a_1}{2}) tan(65^{\circ})cos(\theta)[/math]


[math]r_{D1}=(\frac{.8686+1.2237}{2}e-\frac{1.2237-.8686}{2}) tan(65^{\circ})cos(\theta)\qquad \qquad r_{D2}=(\frac{.8686+1.2237}{2}e+\frac{1.2237-.8686}{2}) tan(65^{\circ})cos(\theta)[/math]


[math]r_{D1}=(\frac{2.0923}{2}\frac{sin(25^{\circ})}{cos(20^{\circ})}-\frac{.3551}{2}) tan(65^{\circ})cos(20^{\circ})\qquad \qquad r_{D2}=(\frac{2.0923}{2}\frac{sin(25^{\circ})}{cos(20^{\circ})}+\frac{.3551}{2}) tan(65^{\circ})cos(20^{\circ}))[/math]


[math]r_{D1}=(\frac{2.0923}{2}\frac{sin(25^{\circ})}{cos(20^{\circ})}-\frac{.3551}{2}) tan(65^{\circ})cos(20^{\circ})\qquad \qquad r_{D2}=(\frac{2.0923}{2}\frac{sin(25^{\circ})}{cos(20^{\circ})}+\frac{.3551}{2}) tan(65^{\circ})cos(20^{\circ}))[/math]


[math]r_{D1}=(1.0459(.4497)-.1775)\cdot 2.1445\cdot .9397=.5901\ \text{m} \qquad \qquad r_{D2}=(1.0459(.4497)+.1775)\cdot 2.1445\cdot .9397=1.3055 \text{m}[/math]


The height to the first directrix circle is

[math]z_{D1}=r_{D1} cot(\theta)=.5901cot(20)=1.6212[/math]

and the x and y components are

[math]x_{D1}=r_{D1}\ cos(\phi)=.5901 cos(0)=.5901\text {m}\ \ \ \ y_{D1}=r_{D1}cos(\phi)=.5901 sin(0)=0[/math]


The height to the second directrix circle is

[math]z_{D2}=r_{D2} cot(\theta)=1.3055cot(20)=3.5868\ \text{m}[/math]

and the x and y components are

[math]x_{D2}=r_{D2} cos(\phi)=1.3055cos(0)=1.3055\text {m}\ \ \ \ y_{D2}=r_{D2} sin(\phi)=1.3055sin(0)=0[/math]


The distance between the two point

[math]\sqrt{(1.3055-.5901)^2+(0-0)^2+(3.5868-1.6212)^2}=\sqrt{.715^2+1.9656^2}=2.09\text {m}[/math]


This should be equal to 2a

[math]2a=2(\frac{a_1+a_2}{2})=2(\frac{.8684+1.2234}{2})=2.09\text {m}[/math]


This gives the components for a point on the directrix circles as

[math]x_{D1}=r_{D1}\ cos(\phi)=.5901cos(0)=.5901\text {m}\qquad y_{D1}=r_{D1}cos(\phi)=.5901 sin(0)=0\qquad z_{D1}=r_{D1} cot(\theta)=.5901cot(20)=1.6212\ \text{m}[/math]
[math]x_{D2}=r_{D2} cos(\phi)=1.3055cos(0)=1.3055\text {m}\qquad y_{D2}=r_{D2} sin(\phi)=1.3055sin(0)=0\qquad z_{D2}=r_{D2} cot(\theta)=1.3055cot(20)=3.5868\ \text{m}[/math]


[math]x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cos(0)}{(cot(20^{\circ})+cos(0)cot(65^{\circ})}=0.7872\qquad y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53sin(0)}{(cot(20^{\circ})+cos(0)cot(65^{\circ})}=0\qquad z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cot(20^{\circ})}{(cot(20^{\circ})+cos(0)cot(65^{\circ})}=2.1623[/math]
[math]D2P=\sqrt{(x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2}=\sqrt{(1.3055-0.7872)^2+(0-0)^2+(3.5868-2.1623)^2}=\sqrt{(.5183)^2+(1.445)^2}=\sqrt{.2686+2.0292}=1.5158611\ \text{m}[/math]


[math]D1P=\sqrt{(x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2}=\sqrt{(0.7872-.5901)^2+(0-0)^2+(2.1623-1.6212)^2}=\sqrt{(.1971)^2+(.5411)^2}=\sqrt{.0388+.2927}=.575879865944\ \text{m}[/math]




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]