Weight

From New IAC Wiki
Revision as of 15:01, 30 May 2017 by Vanwdani (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
\underline{Navigation}


4.1.5 Weight

Using the theoretical differential cross section from previous

dσdΩ=α24E2(3+cos2θ)2sin4θ


α2=5.3279×105


E53.013MeV

We can take the Moller electron distribution of Theta in the Center of Mass frame, and multiply each given angle Theta by the expected differential cross section.

MolThetaCM spread.png


This causes the Moller Theta distribution in the Center of Mass frame to directly follow the theoretical differential cross section.

MolThetaCMWeightedTheory LH2 11GeV.png


The Lab frame distribution of Theta can also be weighted similarly. However, instead of having it be a differential cross section, we can find the necessary number of particles.

dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section


dσdΩ=dNLdΩ=dNΦρdΩ


dσdΩρ ΦdΩ=dN



Checking versus the given Luminosity for the experiment


L=1.33×1035cm2s×1024cm2barn=1.33×1011barns1s1


LdσdΩdΩ=1.33×1011barns1×2π dσdΩ sinθdθ=N


Limiting the range of Theta to within 5 to 40 degrees in the Lab frame:

DetectorRangeLab.png


We can find the corresponding angular range in the CM frame:

DetectorRangeCM.png


Integrating the differential cross-section over the solid angle:

DetectorIntegrationXSect LH2 11GeV.png
IntegralDiffXSect->Integral()

4.97493824519086629e+04 barns


Multiplying by the Luminosity, we find:

4.97×104barns×1.35×1011barnss=6.71×1015electronss





\underline{Navigation}