Test for Theta at 20 degrees and Phi at 0

From New IAC Wiki
Revision as of 18:37, 15 May 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
\underline{Navigation}


Test for θ=20 and ϕ=0

Solving for the components of the ellipse

a1=2.53sin(θ)sin(115θ)=2.53sin(20)sin(11520)=2.53.342.9962=.8686


a2=2.53sin(θ)sin(65θ)=2.53sin(20)sin(6520)=2.53.342.0872=1.2237


cellipse(Δa sin(65),0,z+Δa cos(65))


cellipse(a2a12sin(65),0,2.53+a2a12cos(65))


cellipse(1.2237.86862sin(65),0,2.53+1.2237.86862cos(65))


cellipse(.35502sin(65),0,2.53+.35502cos(65))


cellipse(.1775sin(65),0,2.53+.1775cos(65))


cellipse(.1609,0,.0750)


P(ϕ=0)(a2a12sin(65)+a1+a22sin((65),0,2.53+a2a12cos(65)a1+a22cos(65))


P(ϕ=0)(1.2234.86842sin(65)+.8684+1.22342sin((65),0,2.53+1.2234.86842cos(65).8684+1.22342cos(65))


P(ϕ=0)(.35502sin(65)+2.09182sin((65),0,2.53+.35502cos(65)2.09182cos(65))


P(ϕ=0)(.1775sin(65)+1.0459sin((65),0,2.53+.1775cos(65)1.0459cos(65))


P(ϕ=0)(.7870,0,2.1623)


x=2.53cos(ϕ)cot(θ)+cos(ϕ)cot(65)


x=2.53cos(0)cot(20)+cos(0)cot(65)


x=2.532.7475+.4663


x=2.533.2138=.7870cm


The y component is zero for ϕ=0

The z component can be found from the ellipse equation

z=cot(65)x+2.53=cot(65)(.7870)+2.53=2.1623 cm


esin(25)cos(20)=0.96447


rD1=RLower Dandelincos(θ)=(aeΔa)tan(65)cos(θ)rD2=RLower Dandelincos(θ)=(ae+Δa)tan(65)cos(θ)


rD1=(a1+a22ea2a12)tan(65)cos(θ)rD2=(a1+a22e+a2a12)tan(65)cos(θ)


rD1=(.8686+1.22372e1.2237.86862)tan(65)cos(θ)rD2=(.8686+1.22372e+1.2237.86862)tan(65)cos(θ)


rD1=(2.09232sin(25)cos(20).35512)tan(65)cos(20)rD2=(2.09232sin(25)cos(20)+.35512)tan(65)cos(20))


rD1=(2.09232sin(25)cos(20).35512)tan(65)cos(20)rD2=(2.09232sin(25)cos(20)+.35512)tan(65)cos(20))


rD1=(1.0459(.4497).1775)2.1445.9397=.5901 mrD2=(1.0459(.4497)+.1775)2.1445.9397=1.3055m


The height to the first directrix circle is

zD1=rD1cot(θ)=.5901cot(20)=1.6212

and the x and y components are

xD1=rD1 cos(ϕ)=.5901cos(0)=.5901m    yD1=rD1cos(ϕ)=.5901sin(0)=0


The height to the second directrix circle is

zD2=rD2cot(θ)=1.3055cot(20)=3.5868 m

and the x and y components are

xD2=rD2cos(ϕ)=1.3055cos(0)=1.3055m    yD2=rD2sin(ϕ)=1.3055sin(0)=0


The distance between the two point

(1.3055.5901)2+(00)2+(3.58681.6212)2=.7152+1.96562=2.09m


This should be equal to 2a

2a=2(a1+a22)=2(.8684+1.22342)=2.09m


This gives the components for a point on the directrix circles as

xD1=rD1 cos(ϕ)=.5901cos(0)=.5901myD1=rD1cos(ϕ)=.5901sin(0)=0zD1=rD1cot(θ)=.5901cot(20)=1.6212 m
xD2=rD2cos(ϕ)=1.3055cos(0)=1.3055myD2=rD2sin(ϕ)=1.3055sin(0)=0zD2=rD2cot(θ)=1.3055cot(20)=3.5868 m


xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65)=2.53cos(0)(cot(20)+cos(0)cot(65)=0.7872yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65)=2.53sin(0)(cot(20)+cos(0)cot(65)=0zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65)=2.53cot(20)(cot(20)+cos(0)cot(65)=2.1623
D2P=(xD2xP)2+(yD2yP)2+(zD2zP)2=(1.30550.7872)2+(00)2+(3.58682.1623)2=(.5183)2+(1.445)2=.2686+2.0292=1.5158611 m


D1P=(xPxD1)2+(yPyD1)2+(zPzD1)2=(0.7872.5901)2+(00)2+(2.16231.6212)2=(.1971)2+(.5411)2=.0388+.2927=.575879865944 m
\underline{Navigation}