Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs
 
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs
 
diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
 
diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
 +
 
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
 
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
 +
 
2. Twiss parameters
 
2. Twiss parameters
 +
 
3. Ellipse centroid for longitudinal phase portrait
 
3. Ellipse centroid for longitudinal phase portrait
 +
 
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
 
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
  

Revision as of 20:31, 13 May 2015

Development of a Positron source using a PbBi converter and a Solenoid

Converter target properties

Definition of Lead Bismuth


1cm diameter target 2 mm thick PbBi

0.5 Tesla solenoid


Desire to know

Emmittance (mrad * mm)

dispersion (Delta P/P) (mradian/1000th mm/1000th)

of electrons after the PbBi target.


pole face rotation in vertical plane.

G4BeamLine and MCNPX

Target thickness optimization

PbBi_THickness_GaussBeam

Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:

1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")

2. Twiss parameters

3. Ellipse centroid for longitudinal phase portrait

4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.

Electrons - RMS

Ed1.png

Electrons - 68.2% core

Ed2.png

Positrons - RMS

Pd1.png

Positrons - 68.2% core

Pd2.png

PbBi_THickness_CylinderBeam

Dmitry's simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right) for cylindrical beam. Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy )with ellipse - geometric (not normalized) emittance (ellipse area divided by "pi") and Twiss parameters as well as sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projection of the ellipse on the coordinate and divergence axes respectively.

Electrons - RMS

E1.png

Electrons - 68.2% core

E2.png

Positrons - RMS

P1.png

Positrons - 68.2% core

P2.png

PbBi_THickness_PntSource

Energy Deposition in Target system (Heat)

Layout.png

ElectronTracks.pngPhotonTracks.png

ElectronEnergy.pngPhotonEnergy.png

MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.

Model.png

Tablen1.png

Tablen2.png

2mm thick PbBi, 10 MeV, point source

G4beamline pencil beam 10 cm radius

beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
      meanMomentum=10. sigmaE=0. maxR=10.
PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 1091
1.5 1728
2 1902[math]\pm[/math] 43 1984
2.5 2062
3 [math]\pm[/math] 13 1986
3.5 1938
4 [math]\pm[/math] 39 1858
5 1646
6 [math] \pm[/math] 37 1541
10 1216

Solenoid

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Beam Line Design

PbBi_BeamLine_Elements

Positrons#Simulations