Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
If this energy were  uniformly distributed  along the 0.5 mm thick beam pipe having a diameter of 3.48 cm then I would see
 
If this energy were  uniformly distributed  along the 0.5 mm thick beam pipe having a diameter of 3.48 cm then I would see
  
:<math>3.08 \times 10^{10} \mbox{keV}  \times \frac{1}{100 \mbox{cm}}\times \frac{1}{ \pi \times 3.48 \mbox {cm} } \times \frac{1}{2 \times 10^7 \mbox{e}^-}=0.12\frac{\mbox{keV}}{\mbox{cm}^2 \;\;\mbox{e}^-}</math>  
+
:<math>3.08 \times 10^{10} \mbox{keV}  \times \frac{1}{100 \mbox{cm}}\times \frac{1}{ \pi \times 3.48 \mbox {cm} } \times \frac{1}{2 \times 10^7 \mbox{e}^-}=3.5\frac{\mbox{keV}}{\mbox{cm}^2 \;\;\mbox{e}^-}</math>  
  
  

Revision as of 16:33, 4 September 2015

Development of a Positron source using a PbBi converter and a Solenoid

Task List

1.) new electron and positron files for the case of two 0.25 mm thick SS windows around the PbBi target.

2.) Determine electron energy deposition in SS pipe per cm^2 of pipe surface area for pipes with diameter of 34.8, 47.5, 60.2, 72.9, and 97.4 mm and thickness of 1.65mm along the z-axis.

3.) Insert uniform B-field that can be scaled from 0 to 0.3 and 1 Telsa.

Beam Pipe Heating

A 10 MeV electron beam with a radius of 0.5 cm was incident on a 2 mm thick PbBi target. The target is positioned at Z = -902 mm.


TF Niowave SolenoidDesign 9-3-15.png


Element dimension
Inner beam pipe radius 1.74 cm
Inner beam pipe thickness 0.165 cm
water jacket thickness 0.457 cm
outer beam pipe radius 2.362 cm
outer beam pipe thickness 0.165 cm
Solenoid inner radius 2.527 cm
Solenoid outer radius 4.406 cm


Max available power from beam heating

If you assume a 1mA beam then the beam power incident on the target is

Beam Power = E(MeV) I (μ A) = 10 MeV × 1000 mA = 10 kW

If the beam does not interact with the target and all the beam power is distributed uniformly along a 100 cm long beam pipe with a diameter of 3.38 cm then the power deposited per area would be

10000W×1100cm×1π×3.48cm=2.3Wcm2

Heating along the Z-axis

GEANT4 predicts that scattered electrons, photons, and positrons (mostly scattered electrons) deposit


BeamPipeDepEmev 34.8 082915.png MCNPXBeamPipeDepEmev 34.8 090315.png
Energy deposited (MeV) in a 1 m long 3.48 cm diameter beam pipe surrounding a 2 mm target located at Z=-900 mm.

According to the above figure, GEANT4 predicts a total of 3.08×107 MeV (the integral adds up the energy in each 1cm bin) of energy will be deposited in a 1m long beam pipe surrounding a 2 mm thick PbBi target located at Z=-902 mm when 20 million electrons impinge the target. The peak energy deposition is 0.3 MeV/e

If this energy were uniformly distributed along the 0.5 mm thick beam pipe having a diameter of 3.48 cm then I would see

3.08×1010keV×1100cm×1π×3.48cm×12×107e=3.5keVcm2e


if you assume a 1 mA beam of electrons then this becomes

(0.24Wcm2)

I converted the above histogram to deposited power by 1000 mA, divide by the number of incident electrons, divide by the circumference of the beam pipe, convert the number of electrons to Coulombs, and use a unit conversion from MeV to W-s per MeV.

(CountsMeVcm)×(12×107e)×(12×π×3.48cm)×(1.×103 Cs)×(e1.6×1019 C)(1.6×1013W sMeV)×

If you use the above factors to weight the histogram, then the figure below shows that GEANT4 predicts a power deposition density of =0.15Wcm2, 3 cm downstream of the target. Back scattered electrons appear to create the hottest spot of =0.53Wcm2 about 3cm upstream of the target.

BeamPipeDepE 34.8mmA 082815.png BeamPipeDepE 34.8mmB 082815.png
Power Deposition Zoomed in and 902 mm offset applied Power deposition over the 1 m long beam pipe



The plot below shows the energy deposited in MeV along the pipe. The Z axis is along the beam direction. The distance around the beam pipe is determine by taking the pipe radius (34.8 mm) and multiplying it by the Phi angle around the pipe. The bins are 1cm x 1cm.



BeamPipeDepEPhi 34.8 082815.png BeamPipeDepE 34.8 082815.png
A maximum of 450,000 MeV is deposited in a 1 cm2 bin when 20 Million , 10 MeV electrons are incident on a 2 mm thick PbBi target located at Z=-902 mm.

Below is energy deposited contributions from from photons(AVSzWg), positrons (AVSzWpos), and electrons.


BeamPipeDepE 34.8 082815 parttype.png

Why is the positron hotspot upstream of the target?



root commands used

TH2D *AVSz=new TH2D("AVSz","AVSz",100,-1000,0,12,-60,60)
BeamPipeE->Draw("35.*atan(PosYmm/PosXmm):PosZmm>>AVSz","DepEmeV"); 
AVSz->Draw("colz");


BeamPipeHeating_4mmthick_PbBi_PositronTarget

Unit conversion

The energy deposited by photon, electrons, and positrons is predicted by GEANT4 and recorded in energy units of keV per incident electron on the PbBi target. To convert this deposited energy to a power you need to assume a beam current. Assuming 1 beam current of 1 mA, the conversion is given easily as

(keVcm2e)×(e1.6×1019C)×(1×103Cs)×(1.6×1016W skeV)

(keVcm2e)=(Wcm2)

Results Table

Beam Pipe Radius (mm) Hot Spot (keV/cm2/e)
34.8 5
47.5
60.2
72.9
97.4

Converter target properties

Definition of Lead Bismuth


1cm diameter target 2 mm thick PbBi

0.5 Tesla solenoid


Desire to know

Emmittance (mrad * mm)

dispersion (Delta P/P) (mradian/1000th mm/1000th)

of electrons after the PbBi target.


pole face rotation in vertical plane.

G4BeamLine and MCNPX

Target thickness optimization

PbBi_THickness_GaussBeam

Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:

1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")

2. Twiss parameters

3. Ellipse centroid for longitudinal phase portrait

4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.

Electrons - RMS

Ed1.png

Electrons - 68.2% core

Ed2.png

Positrons - RMS

Pd1.png

Positrons - 68.2% core

Pd2.png

PbBi_THickness_CylinderBeam

Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:

1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")

2. Twiss parameters

3. Ellipse centroid for longitudinal phase portrait

4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.

Electrons - RMS

E1.png

Electrons - 68.2% core

E2.png

Positrons - RMS

P1.png

Positrons - 68.2% core

P2.png

PbBi_THickness_PntSource

Electrons and Positrons after 2mm of LBE:

Electrons:

E01.pngE02.png

Positrons:

P01.pngP02.png

Energy Deposition in Target system (Heat)

ElectronTracks.pngPhotonTracks.png

ElectronEnergy.pngPhotonEnergy.png

MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.

Model.png

Tablen1.png

Tablen2.png

Solenoid

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Beam Line Design

PbBi_BeamLine_Elements

goals for JLab

Positrons#Simulations