Difference between revisions of "The Wires"

From New IAC Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Points_of_Intersection|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Right_Hand_Wall|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 +
 
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form.  In the y'-x' plane the general equation follows the relationship:
 
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form.  In the y'-x' plane the general equation follows the relationship:
  
<center><math>x'=y'\ tan 6^{\circ}+x_0</math></center>
+
<center><math>x'=y'\ tan\ 6^{\circ}+x_0</math></center>
 
 
 
where <math>x_0</math> is the point where the line crosses the x axis.
 
where <math>x_0</math> is the point where the line crosses the x axis.
  
<center><math>y' \Rightarrow  {y\ tan 6^{\circ}+x_0, y, 0}</math></center>
+
<center><math>y' \Rightarrow  {y\ tan\ 6^{\circ}+x_0, y, 0}</math></center>
  
  
 
In this form we can easily see that the components of x and y , in the y'-x' plane are
 
In this form we can easily see that the components of x and y , in the y'-x' plane are
  
<center><math>x' = y\ sin 6^{\circ}+x_0</math></center>
+
<center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center>
<center><math>y' = y\ cos 6^{\circ}</math></center>
+
 
 +
 
 +
<center><math>y' = y\ cos\ 6^{\circ}</math></center>
 
 
 
The parameterization has reduced two equations with two variables, to two equations which depend on one variable.  Working in the y-x plane, we will undergo a positive rotation,
 
The parameterization has reduced two equations with two variables, to two equations which depend on one variable.  Working in the y-x plane, we will undergo a positive rotation,
  
R(Subscript[\[Theta], yx])=(cos 6\[Degree] -sin 6\[Degree] 0
 
sin 6\[Degree] cos 6\[Degree] 0
 
0 0 1
 
  
)
+
<center><math>R(\theta_{yx})=\begin{bmatrix}
 +
cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\
 +
sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\
 +
0 &0 & 1
 +
\end{bmatrix}</math></center>
  
  
(Components of
+
<center><math>\begin{bmatrix}
same vector
+
Components\ of \\
in new system
+
same\ vector \\
 
+
in\ new\ system
)=(Passive
+
\end{bmatrix}
transformation
+
=\begin{bmatrix}
 +
Passive \\
 +
transformation \\
 
matrix
 
matrix
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
Components\ of \\
 +
vector\ in \\
 +
original\ system
 +
\end{bmatrix}</math></center>
  
) . (Components of
 
vector in
 
original system
 
  
) (New
 
basis
 
vectors
 
  
)=(Active
 
transformation
 
matrix
 
  
) . (original
+
<center><math>
basis
+
\begin{bmatrix}
vectors
+
x'' \\
 
+
y'' \\
)
 
 
 
(x''
 
y''
 
 
z''
 
z''
 
+
\end{bmatrix}=
)=(cos 6\[Degree] -sin 6\[Degree] 0
+
\begin{bmatrix}
sin 6\[Degree] cos 6\[Degree] 0
+
cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\
0 0 1
+
sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\
 
+
0 &0 & 1
) . (x'
+
\end{bmatrix}\cdot
y'
+
\begin{bmatrix}
 +
x' \\
 +
y' \\
 
z'
 
z'
 +
\end{bmatrix}</math></center>
 +
  
) (x'
+
<center><math>
y'
+
\begin{bmatrix}
z'
+
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\
 +
sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\
 +
0 &0 & 1
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
y'\ sin\ 6^{\circ}+x_0 \\
 +
y'\ cos\ 6^{\circ} \\
 +
0
 +
\end{bmatrix}</math></center>
  
)=(cos 6\[Degree] sin 6\[Degree] 0
 
-sin 6\[Degree] cos 6 \[Degree] 0
 
0 0 1
 
  
) . (x''
 
y''
 
z''
 
  
)
+
<center><math>
+
\begin{bmatrix}
(x''
+
x'' \\
y''
+
y'' \\
 
z''
 
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
-y'\ cos\ 6^{\circ}sin\ 6^{\circ}+x_0\ cos\ 6^{\circ} +y'\ cos\ 6^{\circ}sin\ 6^{\circ}\\
 +
y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\
 +
0
 +
\end{bmatrix}</math></center>
 +
  
)=(cos 6\[Degree] -sin 6\[Degree] 0
 
sin 6\[Degree] cos 6\[Degree] 0
 
0 0 1
 
  
) . ( y sin 6\[Degree]+Subscript[x, 0]
+
<center><math>
y cos 6\[Degree]
+
\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
x_0\ cos\ 6^{\circ}\\
 +
y'\ +x_0\sin\ 6^{\circ} \\
 
0
 
0
 +
\end{bmatrix}</math></center>
  
)
 
 
(x''
 
y''
 
z''
 
  
)= (-y cos 6 \[Degree] sin 6 \[Degree]+Subscript[x, 0]cos 6 \[Degree] +y cos 6 \[Degree]sin 6 \[Degree]
+
This relationship shows us that x'' is a constant in this frame while y'' can have any value, which is the horizontal line with respect to the y axis as expected.
y cos^2 6 \[Degree]+Subscript[x, 0]sin 6 \[Degree]+y sin^2 6 \[Degree]
+
 
0
 
  
) (x'
+
----
y'
 
z'
 
  
)= (x'' cos 6\[Degree]+y " sin 6\[Degree]
 
-x'' sin 6 \[Degree]+y " cos 6\[Degree]
 
0
 
  
)
+
<center><math>\underline{\textbf{Navigation}}</math>
 
  (x''
 
y''
 
z''
 
  
)= (Subscript[x, 0]cos 6 \[Degree]  
+
[[Points_of_Intersection|<math>\vartriangleleft </math>]]
y +Subscript[x, 0]sin 6 \[Degree]
+
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
0
+
[[Right_Hand_Wall|<math>\vartriangleright </math>]]
  
)
+
</center>

Latest revision as of 20:32, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship:

[math]x'=y'\ tan\ 6^{\circ}+x_0[/math]

where [math]x_0[/math] is the point where the line crosses the x axis.

[math]y' \Rightarrow {y\ tan\ 6^{\circ}+x_0, y, 0}[/math]


In this form we can easily see that the components of x and y , in the y'-x' plane are

[math]x' = y\ sin\ 6^{\circ}+x_0[/math]


[math]y' = y\ cos\ 6^{\circ}[/math]

The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation,


[math]R(\theta_{yx})=\begin{bmatrix} cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ 0 &0 & 1 \end{bmatrix}[/math]


[math]\begin{bmatrix} Components\ of \\ same\ vector \\ in\ new\ system \end{bmatrix} =\begin{bmatrix} Passive \\ transformation \\ matrix \end{bmatrix}\cdot \begin{bmatrix} Components\ of \\ vector\ in \\ original\ system \end{bmatrix}[/math]



[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ 0 &0 & 1 \end{bmatrix}\cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ 0 &0 & 1 \end{bmatrix}\cdot \begin{bmatrix} y'\ sin\ 6^{\circ}+x_0 \\ y'\ cos\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} -y'\ cos\ 6^{\circ}sin\ 6^{\circ}+x_0\ cos\ 6^{\circ} +y'\ cos\ 6^{\circ}sin\ 6^{\circ}\\ y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} x_0\ cos\ 6^{\circ}\\ y'\ +x_0\sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


This relationship shows us that x is a constant in this frame while y can have any value, which is the horizontal line with respect to the y axis as expected.




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]