Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]]
+
[[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Initial_Lab_Frame_4-momentum_components|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
+
[[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 9: Line 9:
  
 
=Scattered and Moller Electron energies in CM=
 
=Scattered and Moller Electron energies in CM=
Inspecting the Lorentz transformation to the Center of Mass frame:
 
  
  
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
+
We can use the Mandelstam variable s, the square of the center of mass energy, to find <math>E^*</math>
  
 +
<center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2</math></center>
  
For the case of a stationary electron, this simplifies to:
 
  
<center><math>\left( \begin{matrix} E^* \\ p^*_{x} \\ p^*_{y} \\ p^*_{z}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^*\gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+m\\ 0 \\ 0 \\ p_{1(z)}+0\end{matrix} \right)</math></center>
+
<center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}</math></center>
  
  
which gives,
+
As shown earlier, the square of a 4-momentum is
  
  
<center><math>\Longrightarrow\begin{cases}
+
<center><math>\mathbf P^{2} \equiv m^2</math></center>
E^*=\gamma^* (E_{1}+m)-\beta^* \gamma^* p_{1(z)} \\
 
p^*_{z}=-\beta^* \gamma^*(E_{1}+m)+\gamma^* p_{1(z)}
 
\end{cases}</math></center>
 
  
 +
This gives,
 +
<center><math>s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+  m_2^{2}</math></center>
  
Solving for <math>\beta^*</math>, with <math>p^*_{z}=0</math>
 
  
<center><math>\Longrightarrow \beta^* \gamma^*(E_{1}+m)=\gamma^* p_{1(z)}</math></center>
+
For the case <math>m_1=m_2=m</math>
  
  
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow \beta^*=\frac{p_{1}}{(E_{1}+m)}</math>
 
|}
 
  
 +
<center><math>s \equiv  2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center>
  
 +
Using the relationship
  
Similarly, solving for <math>\gamma^*</math> by substituting in <math>\beta^*</math>
 
  
 +
<center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center>
  
<center><math>E^*=\gamma^* (E_{1}+m)-\frac{p_{1}}{(E_{1}+m)} \gamma^* p_{1(z)}</math></center>
 
  
  
<center><math>E^*=\gamma^* \frac{(E_{1}+m)^2}{(E_{1}+m)}-\gamma^*\frac{(p_{1(z)})^2}{(E_{1}+m)}</math></center>
+
<center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)</math></center>
  
  
Using the fact that <math>E^*=[(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2]^{1/2}</math>
+
In the center of mass frame of reference,
  
 +
<center><math>E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*</math></center>
  
<center><math>E^*=\gamma^* \frac{E^*\ ^2}{(E_{1}+m)}</math></center>
 
  
{| class="wikitable" align="center"
+
<center><math>s \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} </math></center>
| style="background: gray"      | <math>\Longrightarrow \gamma^*=\frac{(E_1+m)} {E^*}</math>
 
|}
 
  
  
 +
Using the relativistic energy equation
  
 +
<center><math>E^2 \equiv \vec p_1 \ ^2+m^2</math></center>
  
Using the relation
 
  
<center><math>\left( \begin{matrix} E^*_{1}+E^*_{2} \\ p^*_{1(x)}+p^*_{2(x)} \\ p^*_{1(y)}+p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+m\\ 0 \\ 0 \\ p_{1(z)}+0\end{matrix} \right)</math></center>
+
<center><math>s \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})</math></center>
  
  
<center><math>\Longrightarrow \left( \begin{matrix} E^*_{2} \\ p^*_{2(x)} \\ p^*_{2(y)} \\ p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}m\\ 0 \\ 0 \\ 0\end{matrix} \right)</math></center>
+
<center><math>s=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}</math></center>
  
  
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\gamma^* (m) \\
 
p^*_{2(z)}=-\beta^* \gamma^* (m)
 
\end{cases}</math></center>
 
  
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\Rightarrow E_1^*=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2^*</math>
 +
|}
  
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\frac{(E_{1}+m)}{E^*} (m) \\
 
p^*_{2(z)}=-\frac{p_{1}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*} (m_{2})
 
\end{cases}</math></center>
 
  
  
<center><math>\Longrightarrow\begin{cases}
 
E^*_{2}=\frac{(11000 MeV+.511 MeV)}{106.031 MeV} (.511 MeV) \approx 53.015 MeV\\
 
p^*_{2(z)}=-\frac{11000 MeV}{106.031 MeV} (.511 MeV) \approx -53.013 MeV
 
\end{cases}</math></center>
 
  
 +
----
  
<center><math>\Longrightarrow \left( \begin{matrix} E^*_{1}\\ p^*_{1(x)} \\ p^*_{1(y)} \\ p^*_{1(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}\\ 0 \\ 0 \\ p_{1(z)}\end{matrix} \right)</math></center>
 
  
 +
<center><math>\underline{\textbf{Navigation}}</math>
  
<center><math>\Longrightarrow\begin{cases}
+
[[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]]
E^*_{1}=\gamma^* (E_{1})-\beta^* \gamma^* p_{1(z)} \\
+
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
p^*_{1(z)}=-\beta^* \gamma^*(E_{1})+\gamma^* p_{1(z)}
+
[[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]]
\end{cases}</math></center>
 
  
 
+
</center>
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{1}=\frac{(E_{1}+m)}{E^*} (E_{1})-\frac{p_{1(z)}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*} p_{1(z)} \\
 
p^*_{1(z)}=-\frac{p_{1}}{(E_{1}+m)} \frac{(E_{1}+m)}{E^*}(E_{1})+\frac{(E_{1}+m)}{E^*} p_{1(z)}
 
\end{cases}</math></center>
 
 
 
 
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E^*_{1}=\frac{(11000 MeV+.511 MeV)}{106.031 MeV} (11000 MeV)-\frac{11000 MeV}{106.031 MeV} 11000 MeV \approx 53.015 MeV\\
 
p^*_{1(z)}=-\frac{11000 MeV}{106.031 MeV}(11000 MeV)+\frac{(11000 MeV+.511 MeV)}{106.031 MeV} 11000 MeV \approx 53.013 MeV
 
\end{cases}</math></center>
 
 
 
 
 
 
 
<center><math>p^*_{1} =\sqrt {(p^*_{1(x)})^2+(p^*_{1(y)})^2+(p^*_{1(z)})^2} \Longrightarrow p^*_{1}=p^*_{1(z)}</math></center>
 
 
 
 
 
<center><math>p^*_{2} =\sqrt {(p^*_{2(x)})^2+(p^*_{2(y)})^2+(p^*_{2(z)})^2} \Longrightarrow p^*_{2}=p^*_{2(z)}</math></center>
 
 
 
 
 
This gives the momenta of the particles in the center of mass to have equal magnitude, but opposite directions.
 
 
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <center><math>E^*=E^*_1+E^*_2=\sqrt{2m(m+E_1)}</math></center>
 
|}
 

Latest revision as of 18:54, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Scattered and Moller Electron energies in CM

We can use the Mandelstam variable s, the square of the center of mass energy, to find [math]E^*[/math]

[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2[/math]


[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}[/math]


As shown earlier, the square of a 4-momentum is


[math]\mathbf P^{2} \equiv m^2[/math]

This gives,

[math]s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}[/math]


For the case [math]m_1=m_2=m[/math]


[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*[/math]

Using the relationship


[math]\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)[/math]


[math]s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)[/math]


In the center of mass frame of reference,

[math]E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*[/math]


[math]s \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} [/math]


Using the relativistic energy equation

[math]E^2 \equiv \vec p_1 \ ^2+m^2[/math]


[math]s \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})[/math]


[math]s=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}[/math]


[math]\Rightarrow E_1^*=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2^*[/math]





[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]