From New IAC Wiki
Jump to navigation Jump to search

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

s Channel

The s quantity is known as the square of the center of mass energy (invariant mass)

[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2[/math]

[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2} \equiv \mathbf P_1^{'*2}+2 \mathbf P_1^{'* }\mathbf P_2^{'*}+ \mathbf P_2^{'*2}[/math]

As shown earlier, the square of a 4-momentum is

[math]\mathbf P^{2} \equiv m^2[/math]

This gives,

[math]s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2} \equiv m_1^{'2}+2 \mathbf P_1^{'*} \mathbf P_2^{'*}+ m_2^{'2}[/math]

For the case [math]m_1=m_2=m[/math]

[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^* \equiv 2m^{2}+2 \mathbf P_1^{'*} \mathbf P_2^{'*}[/math]

Using the relationship

[math]\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)[/math]

[math]s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)[/math]

In the center of mass frame of reference,

[math]E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*[/math]

[math]s_{CM} \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} [/math]

Using the relativistic energy equation

[math]E^2 \equiv \vec p_1 \ ^2+m^2[/math]

[math]s_{CM} \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})[/math]

[math]s_{CM}=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}[/math]


[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]