Phi Dependent Components

From New IAC Wiki
Revision as of 14:33, 30 May 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Since only the z direction is considered to be the relativistic direction of motion, this implies that the x and y components are not effected by a Lorentz transformation and remain the same in the CM and Lab frame. Holding the angle Phi constant at an initial value of 10 degrees, allows us to find the x and y components.

Xy lab.png
Figure 4: Definition of Moller electron variables in the Lab Frame in the x-y plane.
Similarly, [math]\phi '_2=\arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)[/math]

where [math]p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}[/math]


and using [math]p^2=p_{(x)}^2+p_{(y)}^2+p_{(z)}^2[/math]

this gives [math](p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2[/math]

[math]\Longrightarrow (p'_{2})^2-(p'_{2(z)})^2 = (p'_{2(xy)})^2[/math]

[math]\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}[/math]

which gives[math]\phi '_2 = \arccos \left( \frac{p_{2(x)}'}{\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}}}\right)[/math]
[math]\Longrightarrow p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} \cos(\phi)[/math]

Similarly, using [math]p_{2}^2=p_{2(x)}^2+p_{2(y)}^2+p_{2(z)}^2[/math]

[math]\Longrightarrow p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}=p_{2(y)}^{'\ 2}[/math]
[math]p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}[/math]

Checking on the sign from the cosine results for [math]\phi '_2[/math]

We have the limiting range that [math]\phi[/math] must fall within:

[math]-\pi \le \phi '_2 \le \pi\ Radians[/math]
Xy plane.png

Examining the signs of the components which make up the angle [math]\phi[/math] in the 4 quadrants which make up the xy plane:

[math]For\ 0 \ge \phi '_2 \ge \frac{-\pi}{2}\ Radians[/math]
[math]For\ 0 \le \phi '_2 \le \frac{\pi}{2}\ Radians[/math]
[math]For\ \frac{-\pi}{2} \ge \phi '_2 \ge -\pi\ Radians[/math]
[math]For\ \frac{\pi}{2} \le \phi '_2 \le \pi\ Radians[/math]


[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]