Difference between revisions of "Neutron Polarimeter"

From New IAC Wiki
Jump to navigation Jump to search
Line 53: Line 53:
 
1. Find the incident photon energy based on detected neutron energy.
 
1. Find the incident photon energy based on detected neutron energy.
  
2. Predict the detected neutron energy based of incident photon energy.
+
2. The threshold for <math>^2D(n,\gamma)</math> reaction is <math>E_{\gamma} = 1.577\ MeV<math>
  
 +
3. Predict the detected neutron energy based of incident photon energy.
 +
 +
  For the incident photon beam energy up to 25 MeV we have (0 - 11.69) MeV neutrons
 +
 +
  For the incident photon beam energy up to 44 MeV we have (0 - 21.17) MeV neutrons
  
 
    
 
    

Revision as of 17:46, 5 April 2011

Go Back


Four-vector Algebra

Collision.png


Let's do the four-vector algebra:

[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) [/math] 
[math] p_D     = \left( m_D,\ 0,\ 0,\ 0  \right) [/math] 
[math] p_{n} = \left( E_n,\ \ p_n\cos \Theta_n,\ \ p_n\sin \Theta_n,\ \ 0  \right) [/math] 
[math] p_{p} = \left( E_p,\ \ p_p\cos \Theta_p,\ \ p_p\sin \Theta_p,\ \ 0  \right) [/math] 

By conservation of four-momentum:

[math] p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n\ \ \Rightarrow \ \  p^{\mu}_p = p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n[/math]

Squaring both side of equation above and using the four-momentum invariants [math](p^{\mu})^2 = m^2[/math] we have:

[math] m_p^2 = m_D^2 + m_n^2 +  2T_{\gamma}\cdot m_D  - 2m_D\cdot E_n - 2\left( T_{\gamma}E_n - T_{\gamma}p_n\cos\Theta_n\right) [/math]


Energy dependence of [math]E_\gamma[/math] as function of neutron energy [math]E_n[/math] and neutron angle [math]\Theta_n[/math]

We can easily solve the equation above with respect to incident photon energy:

[math]T_{\gamma} = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D E_n}{2\ (m_D - E_n + p_n cos\Theta_n)} [/math]

Detector is located at [math]\Theta_n = 90^o[/math], so

[math]T_{\gamma} = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D E_n}{2\ (m_D - E_n)} =  \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D (T_n + m_n)}{2\ (m_D - (T_n + m_n))}[/math]

For non-relativistic neutrons [math]T_n \ll m_n = 939.5\ MeV[/math], and we can neglect the [math]T_n[/math] in denominator, so

[math]T_{\gamma} = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D m_n + 2\ m_D T_n}{2\ (m_D - m_n)} [/math]


Substituting the corresponding masses, we get finally for the case of non-relativistic neutrons detected at the angle [math]\Theta_n = 90^o[/math]:

[math]T_{\gamma}\ [MeV] = 2.003\ T_n\ [MeV] + 1.577\ [MeV][/math]

and visa versa:

[math]T_n\ [MeV] = 0.499\ T_{\gamma}\ [MeV] - 0.787\ [MeV][/math]


Using the formulas above we can:

1. Find the incident photon energy based on detected neutron energy.

2. The threshold for [math]^2D(n,\gamma)[/math] reaction is [math]E_{\gamma} = 1.577\ MeV\lt math\gt 3. Predict the detected neutron energy based of incident photon energy. For the incident photon beam energy up to 25 MeV we have (0 - 11.69) MeV neutrons For the incident photon beam energy up to 44 MeV we have (0 - 21.17) MeV neutrons Also note: = and visa versa = \lt math\gt T_n = \frac {2\ T_{\gamma}\ m_D + m_D^2 + m_n^2 - m_p^2} {2\left( T_{\gamma} + m_D \right)} - m_n[/math]

how it looks

Kinetic energy 0 900 MeV.jpeg Kinetic energy 0 21 MeV.jpeg


low energy approximation=

As we can see from Fig.2 for low energy neutrons (0-21 MeV)
energy dependence of incident photons is linear
Find that dependence. We have:
[math] T_{\gamma}(0\ MeV) = 1.715360792\ MeV [/math] [math] T_{\gamma}(21\ MeV) = 44.78703086\ MeV [/math]
So, the equation of the line is:
[math] T_{\gamma} = \frac{T_{\gamma}(21\ MeV) - T_{\gamma}(0\ MeV)}{21\ MeV - 0\ MeV}\ T_n + T_{\gamma}(0\ MeV) [/math]
Finally for low energy neutrons (0-21 MeV):
[math] T_{\gamma} = 2.051\ T_n + 1.715 [/math]

example of error calculation

==example 1=+

Say, we have, 10 MeV neutron with uncertainty 1 MeV, the corresponding uncertainly for photons energy is:

[math] \delta T_{\gamma} = 2.051\ \delta T_n = 2.051\times 1\ MeV = 2.051\ MeV [/math]

example 2

Say, the neutron's time of flight uncertainly is 1 ns

The neutron's kinetic energy is:

[math]T_n = m_n (\gamma - 1) = m_n\left[ \frac{1}{\sqrt{1-\left(\frac{l}{c\ t}\right)^2}} - 1 \right][/math]

And:

[math]\delta T_n \left(\delta t\right) = -\ \frac{m\ l^2 \delta t}{\left(1-\left(\frac{l}{c\ t}\right)^2\right)^{3/2}c^2 t^3}[/math]


Also we need the neutron's time of flight as function of neutron's kinetic energy:

[math]t:=\frac{l}{c\ \beta_n} = \frac{l}{c\ (p_n/E_n)} =
         \frac{l\ (T_n + m_n)}{c\sqrt{T_n^2+2m_nT_n}}[/math]


Say, we have 10 MeV neutron, 1 m away detector, and neutron's time of flight uncertainty is 1 ns. Then the neutron time of flight is:


[math]t(T_n = 10\ MeV) = 23\ ns[/math]   


Neutron kinetic energy errors are:

[math]\delta T_n(\delta t = 1\ ns) = 0.88\ MeV[/math]
[math]\frac{\delta T_n}{T_n} = \frac{0.88\ MeV}{10\ MeV} = 8.8\ %[/math] 


And photon energy errors are:

[math]\delta T_{\gamma} = 2.051\cdot \delta T_n = 2.051\cdot 0.88\ MeV = 1.81\ MeV [/math] 
[math]\frac{\delta T_{\gamma}}{T_{\gamma}} = \frac{1.80\ MeV}{(2.051\cdot 10 + 1.715)\ MeV} = 8.1\ %[/math]


Below are some examples for different detector distance and neutron kinetic energy:

[math]\delta t_n[/math] [math]l[/math] [math]T_n[/math] [math]\beta_n[/math] [math]t_n[/math] [math]\delta T_n[/math] [math]\frac{\delta T_n}{T_n}[/math] [math]\delta T_{\gamma}[/math] [math]\frac{\delta T_{\gamma}}{T_{\gamma}}[/math]
1 ns 1 m 5 MeV 0.103 32 ns 0.31 MeV 6.2 % 0.64 MeV 5.3 %
1 ns 1 m 10 MeV 0.145 23 ns 0.88 MeV 8.8 % 1.81 MeV 8.1 %
1 ns 1 m 20 MeV 0.203 16 ns 2.51 MeV 12.6 % 5.16 MeV 12.1 %
1 ns 1 m 0.5 MeV 0.033 102 ns 0.010 MeV 1.9 %
1 ns 1 m 1 MeV 0.046 72 ns 0.028 MeV 2.8 %
1 ns 1 m 2 MeV 0.065 51 ns 0.078 MeV 3.9 %
1 ns 1 m 4 MeV 0.092 36 ns 0.22 MeV 5.5 %




Go Back