Difference between revisions of "Neutron Polarimeter"

From New IAC Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
     2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math>
 
     2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math>
  
  <math> m_p - m_{\gamma}(=0) - m_D - m_n = </math><br>
+
  <math> m_p^2 - m_{\gamma}^2(=0) - m_D^2 - m_n^2 = </math><br>
 
     <math> = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n  </math> <br>
 
     <math> = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n  </math> <br>
 
     <math> = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n </math>
 
     <math> = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n </math>
Line 36: Line 36:
 
Finally we have:
 
Finally we have:
  
  <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p - m_D - m_n} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)} </math>  
+
  <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)} </math>  
  
 
Because our detector is <math>\Theta_n = 90^o</math>
 
Because our detector is <math>\Theta_n = 90^o</math>
  
  <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p - m_D - m_n} {2\left( m_D - E_n \right)} </math>
+
  <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\left( m_D - E_n \right)} </math>
  
 
==Analise of the energy dependence <math>T_{\gamma}\left(E_n\right)</math> ==
 
==Analise of the energy dependence <math>T_{\gamma}\left(E_n\right)</math> ==

Revision as of 04:42, 6 June 2010

Go Back


Relativistic kinematic

energy dependence of incident photons versus energy of outcoming neutron

Collision.png
[math] E = T + m[/math]
[math] E = p^2 + m^2[/math]

writing four-vectors:

[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) [/math] 
[math] p_D     = \left( m_D,\ 0,\ 0,\ 0  \right) [/math] 
[math] p_{n} = \left( E_n,\ p_n\cos(\Theta_n),\ p_n\sin(\Theta_n),\ 0  \right) [/math] 
[math] p_{p} = \left( E_p,\ p_p\cos(\Theta_p),\ p_p\sin(\Theta_p),\ 0  \right) [/math] 


Doing four-vector algebra:

[math] p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow [/math]
[math] p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 = 

 p^{\mu\ 2}_{\gamma} + p^{\mu\ 2}_D + p^{\mu\ 2}_n + 

    2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n [/math]
[math] m_p^2 - m_{\gamma}^2(=0) - m_D^2 - m_n^2 = [/math]
[math] = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n [/math]
[math] = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n [/math]


Finally we have:

[math] T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)} [/math] 

Because our detector is [math]\Theta_n = 90^o[/math]

[math] T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\left( m_D - E_n \right)} [/math]

Analise of the energy dependence [math]T_{\gamma}\left(E_n\right)[/math]

Go Back