Difference between revisions of "Forest UCM RBM"

From New IAC Wiki
Jump to navigation Jump to search
Line 113: Line 113:
 
::<math> =\vec{\dot{ L}}_{\mbox{Orv}} + \vec{\dot {L}}_{\mbox{about CM}}</math>
 
::<math> =\vec{\dot{ L}}_{\mbox{Orv}} + \vec{\dot {L}}_{\mbox{about CM}}</math>
  
::<math>\Rightarrow \vec L_{\mbox{about CM}} = \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} </math>
+
::<math>\Rightarrow \vec{\dot {L}}_{\mbox{about CM}} = \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} </math>
 +
 
 +
:<math> \vec{\dot {L}}_{\mbox{spin}}\equiv\vec{\dot {L}}_{\mbox{about CM}} = \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} \equiv \Tau(\mbox{ext about CM}) </math>
  
  

Revision as of 13:38, 24 November 2014

Rigid Body Motion

Rigid Body

Rigidy Body
A Rigid Body is a system involving a large number of point masses, called particles, whose distances between pairs of point particles remains constant even when the body is in motion or being acted upon by external force.
Forces of Constraint
The internal forces that maintain the constant distances between the different pairs of point masses.

Total Angular Momentum of a Rigid Body

Consider a rigid body that rotates about a fixed z-axis with the origin at point O.


INSERT PICTURE HERE


let

[math]\vec R[/math] point to the center of mass of the object
[math]\vec {r}_k[/math] points to a mass element [math]m_k[/math]
[math]\vec{r}_k^{\;\;\prime}[/math] points from the center of mass to the mass element [math]m_k[/math]

the angular momentum of mass element [math]m_k[/math] about the point O is given as

[math]\ell_k = \vec {r}_k \times \vec {p}_k = \vec {r}_k \times m \vec {\dot r}_k[/math]

The total angular momentum about the point O is given as

[math] \vec L = \sum \ell_k = \sum \vec {r}_k \times m_k \vec {\dot r}_k[/math]

This can be cast in term of the angular momentum about the center of mass and the angular momentum of the motion

[math]\vec {r}_k = \vec R + \vec{r}_k^{\;\; \prime}[/math]
[math] \vec L = \sum \vec {r}_k \times m_k \vec {\dot r}_k[/math]
[math] = \sum (\vec R + \vec{r}_k^{\;\; \prime}) \times m_k (\vec \dot R + \vec{\dot r}_k^{\;\; \prime})[/math]
[math] = \sum \vec R \times m_k \vec \dot R + \sum \vec R \times m_k \vec{\dot r}_k^{\;\; \prime} + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R +\sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} [/math]


[math]\sum \vec R \times m_k \vec \dot R = \vec R \times \sum m_k \vec \dot R = \vec R \times M \vec \dot R = \vec R \times \vec P[/math]
[math]\vec P =[/math] momentum of the center of Mass
[math]\sum \vec R \times m_k \vec{\dot r}_k^{\;\; \prime} = \vec R \times \sum m_k \vec{\dot r}_k^{\;\; \prime} 0[/math]
[math]\sum m_k \vec{\dot r}_k^{\;\; \prime} = \sum m_k \left ( \vec {r}_k - \vec R\right ) = \sum m_k \vec {r}_k - \sum m_k \vec R = \vec {v}_{cm} - \vec{v}_{cm} = 0[/math]
The location of the center of mass is at [math]\vec{ r}_k^{\;\; \prime} = 0[/math] the derivative is also zero
[math]\sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R = \sum m_k \vec{r}_k^{\;\; \prime} \times \vec \dot R =0 [/math] : The location of the CM is at 0


[math] \vec L = \vec R \times \vec P + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} [/math]
[math] = L_{\mbox{CM}} + L_{\mbox{about CM}} [/math]

The total angular momentum is the sum of the angular momentum of the center of mass of a rigid body [math] L_{\mbox{CM}} [/math] and the angular momentum of the rigid body about the center of mass [math] L_{\mbox{about CM}} [/math]

Planet example

What is the total angular momentum of the earth orbiting the sun?

There are two components

[math] \vec L_{\mbox{CM}} [/math] = angular momentum of the earth orbiting about the sun
[math] \vec L_{\mbox{about CM}} [/math] = angular momentum of the earth orbiting about the earth's center of mass (Spin)


[math]\vec L_{\mbox{tot}} = \vec L_{\mbox{CM}} + \vec L_{\mbox{about CM}}[/math]
[math] \vec L_{\mbox{CM}} [/math] is conserved and defined as Orbital angular momentum
[math]\vec \dot L_{\mbox{CM}} = \vec \dot R \times \vec P + \vec R \times \vec \dot P[/math]
[math]\vec \dot R \times \vec P = \vec V \times M \vec V = 0[/math]
[math]\Rightarrow \vec \dot L_{\mbox{orb}} = \vec R \times \vec \dot P=\vec R \times \vec {F}_{ext}[/math]

If there is only a central force

[math]\vec {F}(\mbox{ext}) = G \frac{Mm}{R^3} \vec R[/math]


Then

[math]\vec R \times \vec {F}(\mbox{ext}) = \vec R \times G \frac{Mm}{R^3} \vec R= G \frac{Mm}{R^3} \vec R \times \vec R =0 [/math]

Thus

[math]\vec \dot L_{\mbox{CM}} = \vec R \times \vec {F}(\mbox{ext}) = 0[/math]
[math]\vec L_{\mbox{CM}} \equiv \vec L_{\mbox{Orb}}[/math] = constant = Orbital angular momentum


The above is a good approximation even though the Sun's gravitational Field is not perfectly uniform


How about [math]\vec L_{\mbox{about CM}}[/math]?

Since

[math]\vec L_{\mbox{tot}} = \sum \vec {r}_k \times m_k \vec {\dot r}_k =\vec L_{\mbox{Orb}} + \vec L_{\mbox{about CM}}[/math]

as seen earlier

[math] \vec L = \sum \vec {r}_k \times m_k \vec {\dot r}_k[/math]
[math] = \sum (\vec R + \vec{r}_k^{\;\; \prime}) \times m_k (\vec \dot R + \vec{\dot r}_k^{\;\; \prime})[/math]
[math] = \vec R \times \vec P + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} [/math]

Then

[math]\dot \vec L = \vec \dot R \times \vec P +\vec R \times \vec \dot P + \sum \vec{\dot r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} [/math]
[math] =\vec R \times \vec \dot P + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} [/math]
[math] =\vec R \times \vec {F}(\mbox{ext}) + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} [/math]
[math] =\vec{\dot{ L}}_{\mbox{Orv}} + \vec{\dot {L}}_{\mbox{about CM}}[/math]
[math]\Rightarrow \vec{\dot {L}}_{\mbox{about CM}} = \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} [/math]
[math] \vec{\dot {L}}_{\mbox{spin}}\equiv\vec{\dot {L}}_{\mbox{about CM}} = \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime} \equiv \Tau(\mbox{ext about CM}) [/math]


[math]\vec L_{\mbox{tot}} = \vec L_{\mbox{tot}} =\vec L_{\mbox{CM}} + \vec L_{\mbox{about CM}}[/math]
[math]=\vec L_{\mbox{orb}} + \vec L_{\mbox{spin}}[/math]
[math]\dot \vec L_{\mbox{tot}} =\sum \vec {\dot r}_k \times m_k \vec {\dot r}_k+\sum \vec {r}_k \times m_k \vec {\ddot r}_k[/math]
[math]= \sum \vec {r}_k \times m_k \vec {\ddot r}_k[/math] :first cross product between same velocity vector is zero
[math]= \sum \vec {r}_k \times m_k \vec {F}(\mbox{ext})_{k}[/math]


Forest_Ugrad_ClassicalMechanics#Rigid_Body_Motion