Difference between revisions of "Forest Bhabha Scattering"

From New IAC Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
the term  
 
the term  
  
ig_e \gamma^{\me}  
+
<math>ig_e \gamma^{\mu}</math>
  
 
used at the vertex to describe the interaction beetween the two spinor states entering the vertex and forming a photon which will "connect" this vertex with the next one.
 
used at the vertex to describe the interaction beetween the two spinor states entering the vertex and forming a photon which will "connect" this vertex with the next one.

Revision as of 16:28, 14 April 2012

Bhabha (electron -positron) Scattering

Bhabha scattering identifies the scatterng of an electron and positron (particle and anti-particle). There are two processes that can occur

1.) scattering via the exchange of a virtual photon

2.) annihilation in which the e+ and e- spend some time as a photon which then reconverts back to an e+e- pair

variables

Let:

[math]p_1 \equiv[/math] initial electron 4-momentum
u_1 \equiv initial electron spinor
p_2 \equiv final electron 4-momentum
u_2 \equiv final electron spinor
p_3 \equiv initial positron 4-momentum
\bar{u}_3 \equiv initial positron spinor
p_4 \equiv finial positron 4-momentum
[math]\bar{u}_4 \equiv[/math] finial positron spinor

Matrix element for scattering

According to the Feynman RUles for QED:

the term

[math]ig_e \gamma^{\mu}[/math]

used at the vertex to describe the interaction beetween the two spinor states entering the vertex and forming a photon which will "connect" this vertex with the next one.

[math]\mathcal{M}_s = \,[/math] [math]e^2 \left( \bar{u}_{3} \gamma^\nu u_4 \right) \frac{1}{(p_1+p_2)^2} \left( \bar{u}_{2} \gamma_\nu u_{1} \right) [/math]

Matrix element for annihilation

[math]\mathcal{M}_a = \,[/math] [math]-e^2 \left( \bar{u}_{3} \gamma^\mu u_{1} \right) \frac{1}{(p_1-p_3)^2} \left( \bar{u}_{2} \gamma_\mu u_4 \right) [/math]


Forest_QMII