DeltaDoverD Progress

From New IAC Wiki
Revision as of 18:18, 6 February 2011 by Foretony (talk | contribs) (→‎1/24/11)
Jump to navigation Jump to search

TD_Ddoverd_2008

TD_Ddoverd_2009

TD_Ddoverd_2010

TD_Ddoverd_2011

2/10/2010

root file reaction [math]Q^2[/math] W vs [math]Q^2[/math] [math]F_{cup}[/math] [math]X_b[/math] [math]X_b\gt 0.3[/math] # events for <1.232
1 B<0, pi^-=27 && e^-=11 Qsqrd 1.gif WvsQsqrd 1.gif Fcup 1.gif Xb 1.gif Xb 11.gif 9868
2 B>0, pi^+=27 && e^-=11 Qsqrd 2.gif WvsQsqrd 2.gif Fcup 2.gif Xb 2.gif Xb 21.gif 412
3 B>0, pi^+=27 && e^-=7 Qsqrd 3.gif WvsQsqrd 3.gif Fcup 3.gif Xb 3.gif Xb 31.gif 793
4 B>0, pi^-=7 && e^-=11 Qsqrd 4.gif WvsQsqrd 4.gif Fcup 4.gif Xb 4.gif Xb 41.gif 400
5 B<0, pi^+=7 && e-=11 Qsqrd 5.gif WvsQsqrd 5.gif Fcup 5.gif Xb 5.gif Xb 51.gif 9406



Rate differences

[math]R_{ep \rightarrow \pi^-X} \equiv \frac{B\lt 0, \pi^- = 27, e^- = 11}{B\gt 0, \pi^- = 7, e^- = 11} [/math]

Which paddle do we expect the Pion to hit if we flip the direction of the B-Field?


Only using Certain Paddles

[math]Ratio_1 = \frac{1(B\lt 0*\pi^-=27*e^-=11)}{2(B\gt 0*\pi^+=27*e^-=11)} = 24[/math]

[math]Ratio_2 = \frac{5(B\lt 0*\pi^+=7*e^-=11)}{4(B\gt 0*\pi^-=7*e^-=11)} = 19[/math]


[math]\frac{Ratio_1}{Ratio_2} = 1.2[/math]

or

[math]Ratio_3 = \frac{1(B\lt 0*\pi^-=27*e^-=11)}{5(B\lt 0*\pi^+=7*e^-=11)} = 1.2[/math]

[math]Ratio_4 = \frac{4(B\gt 0*\pi^-=7*e^-=11)}{2(B\gt 0*\pi^+=27*e^-=11)} = 1.03[/math]


Looking at Ratio_3 and Ratio_4 one can make a conclusion that we are detecting ~[math](11 \pm 8)[/math]% more [math]\pi^-[/math] type hadrons.

Choosing events Below 1.232 GeV && Certain paddle numbers

[math]Ratio_3 = \frac{1(B\lt 0*\pi^-=27*e^-=11)}{5(B\lt 0*\pi^+=7*e^-=11)} = \frac{9868}{9406} = 1.05 [/math]

[math]Ratio_4 = \frac{4(B\gt 0*\pi^-=7*e^-=11)}{2(B\gt 0*\pi^+=27*e^-=11)} = \frac{400}{412} = 0.97 [/math]

22-02-2010

  • NH3 Target, two file lists: NH3Bn.list (B<0, 26994-26983) && NH3Bp.list (B>0, 27074-27079)

no paddle cuts

  • A.) B>0

1.) B>0, [math]e^-_{PaddleNumber} = 7[/math] && [math]\pi^{+}_{PaddleNumber} = 27[/math], NH3Bp1_1.root

2.) B>0, [math]e^-_{PaddleNumber} = 7[/math] && [math]\pi^{-}_{PaddleNumber} = 7[/math] , NH3Bp2_1.root

  • B.) B<0

1.) B<0, [math]e^-_{PaddleNumber} = 11[/math] && [math]\pi^{+}_{PaddleNumber} = 7[/math], NH3Bn1_1.root

2.) B<0, [math]e^-_{PaddleNumber} = 11[/math] && [math]\pi^{-}_{PaddleNumber} = 27[/math] , NH3Bn2_1.root


Paddle Cuts

Again, choosing events below 1.232 GeV, applying cuts, and plotting Histograms for certain electron and pion paddles.

[math]W[/math]_vs_[math]Q^2[/math], [math]Q^2[/math], Fcup && [math]x_B[/math].

  • A.) B>0

1.) B>0, [math]e^-_{PaddleNumber} = 7[/math] && [math]\pi^{+}_{PaddleNumber} = 27[/math], NH3Bp1.root

2.) B>0, [math]e^-_{PaddleNumber} = 7[/math] && [math]\pi^{-}_{PaddleNumber} = 7[/math] , NH3Bp2.root

  • B.) B<0

1.) B<0, [math]e^-_{PaddleNumber} = 11[/math] && [math]\pi^{+}_{PaddleNumber} = 7[/math], NH3Bn1.root

2.) B<0, [math]e^-_{PaddleNumber} = 11[/math] && [math]\pi^{-}_{PaddleNumber} = 27[/math] , NH3Bn2.root

File [math]Q^2[/math] W vs [math]Q^2[/math] [math]F_{cup}[/math] [math]X_b[/math]
NH3Bp1.root Qsqrd1.gif WvsQsqrd1.gif Fcup1.gif 200px
NH3Bp2.root Qsqrd2.gif WvsQsqrd2.gif Fcup2.gif 200px
NH3Bn1.root Qsqrd3.gif WvsQsqrd3.gif Fcup3.gif 200px
NH3Bn2.root Qsqrd4.gif WvsQsqrd4.gif Fcup4.gif 200px



Now you need to cut on [math]Q^2[/math].  The above suggests that looking at 1 < [math]Q^2[/math] < 2 GeV/c^2 may be a good starting point.

The idea is to compare the outbending (B<0) [math] \pi^-[/math] rate in paddle 27 to the inbending(B>0) [math]\pi^-[/math] rate in paddle 7 when 1 < [math]Q^2[/math] < 2. For the same kinematics the rates should be the same because the reaction is the same. Do the same for [math]\pi^+[/math] to see if it is consistent. This will show much flipping the magnet polarity impacts the rate measurement. Are the differences due to the B-field change or the scintillator efficiency, or to the track reconstruction? Our goal is to argue that the detector has the same efficiency for detecting [math]\pi^-[/math] and [math]\pi^+[/math] in the same scintillator when the Torus B-field direction is flipped.

1 < [math]Q^2[/math] < 2

File W vs [math]Q^2[/math] [math]F_{cupint}[/math] [math]X_b[/math]
NH3Bp1.root 200px Fcupint1.gif Xb1 1.gif
NH3Bp2.root 200px Fcupint2.gif Xb2 1.gif
NH3Bn1.root 200px Fcupint3.gif Xb3 1.gif
NH3Bn2.root 200px Fcupint4.gif Xb4 1.gif


[math]X_{bj}[/math] bin Bp1/Bn1 Bp2/Bn2
0.1 2.38 [math]\pm[/math] 0.299 1.09 [math]\pm[/math] 0.405
0.2 1.29 [math]\pm[/math] 0.188 3.59 [math]\pm[/math] 0.215
0.3 1.38 [math]\pm[/math] 0.242 4.6 [math]\pm[/math] 0.284
0.4 1.62 [math]\pm[/math] 1.02 3.76 [math]\pm[/math] 1.28

[math]\frac{B\gt 0 * \pi^+}{B\lt 0 * \pi^+} = \frac{0.0001}{0.00008} = 1.25 \pm 0.13[/math]

[math]\frac{B\gt 0 * \pi^-}{B\lt 0 * \pi^-} = \frac{0.0003255}{0.00006955} = 4.68 \pm 0.156 [/math]

Angle vs Paddle Number Distribution

# [math]\theta[/math] angle vs paddle number [math]\phi[/math] angle vs paddle number
B>0, [math]\pi^+[/math] && [math]e^-[/math] Thetaangle vs paddlenumber 1.gif Phiangle vs paddlenumber 1.gif
B>0, [math]\pi^-[/math] && [math]e^-[/math] Thetaangle vs paddlenumber 2.gif Phiangle vs paddlenumber 2.gif
B<0, [math]\pi^+[/math] && [math]e^-[/math] Thetaangle vs paddlenumber 3.gif Phiangle vs paddlenumber 3.gif
B<0, [math]\pi^-[/math] && [math]e^-[/math] Thetaangle vs paddlenumber 4.gif Phiangle vs paddlenumber 4.gif

26/04/2010

NH3Bn positive pion runs

7.root - 27.root


pion paddle number x_bj=0.1 x_bj=0.2 x_bj=0.3 x_bj=0.4
1 10 [math]\pm[/math] 3.16 38 [math]\pm[/math] 6.16 20 [math]\pm[/math] 4.47 2 [math]\pm[/math] 1.4
2 14 [math]\pm[/math] 3.7 60 [math]\pm[/math] 7.7 28 [math]\pm[/math] 5.3 0
3 20 [math]\pm[/math] 4.5 93 [math]\pm[/math] 9.6 48 [math]\pm[/math] 6.9 3 [math]\pm[/math] 1.7
4 26 [math]\pm[/math] 5.1 87 [math]\pm[/math] 9.3 53 [math]\pm[/math] 7.3 5 [math]\pm[/math] 2.2
5 24 [math]\pm[/math] 4.9 94 [math]\pm[/math] 9.7 42 [math]\pm[/math] 6.5 6 [math]\pm[/math] 2.4
6 30 [math]\pm[/math] 5.5 125 [math]\pm[/math] 1.1 79 [math]\pm[/math] 8.9 7[math]\pm[/math] 2.6
8 16 [math]\pm[/math] 4 102 [math]\pm[/math] 10 65 [math]\pm[/math] 8.1 4 [math]\pm[/math] 2
9 19 [math]\pm[/math] 4.3 96 [math]\pm[/math] 9.8 48 [math]\pm[/math] 6.9 3 [math]\pm[/math] 1.7
10 23 [math]\pm[/math] 4.8 98 [math]\pm[/math] 9.9 57 [math]\pm[/math] 7.5 2 [math]\pm[/math] 1.4
11 16 [math]\pm[/math] 4 71 [math]\pm[/math] 8.4 38 [math]\pm[/math] 6.2 2 [math]\pm[/math] 1.4
12 20 [math]\pm[/math] 4.5 85 [math]\pm[/math] 9.2 53 [math]\pm[/math] 7.3 6 [math]\pm[/math] 2.5
13 13 [math]\pm[/math] 3.6 73 [math]\pm[/math] 8.5 42 [math]\pm[/math] 6.5 5 [math]\pm[/math] 2.2
14 19 [math]\pm[/math] 4.3 75 [math]\pm[/math] 8.7 38 [math]\pm[/math] 6.2 3 [math]\pm[/math] 1.7
15 15 [math]\pm[/math] 3.9 62 [math]\pm[/math] 7.9 25 [math]\pm[/math] 5 2 [math]\pm[/math] 1.4
16 22 [math]\pm[/math] 4.7 58 [math]\pm[/math] 7.6 42 [math]\pm[/math] 6.5 0
17 5 [math]\pm[/math] 2.2 40 [math]\pm[/math] 6.3 23 [math]\pm[/math] 4.8 4 [math]\pm[/math] 2
18 10 [math]\pm[/math] 3.2 33 [math]\pm[/math] 5.7 18 [math]\pm[/math] 4.2 2 [math]\pm[/math] 1.4
19 7 [math]\pm[/math] 2.6 27 [math]\pm[/math] 5.2 21 [math]\pm[/math] 4.5 1 [math]\pm[/math] 1
20 3 [math]\pm[/math] 1.7 34 [math]\pm[/math] 5.8 13 [math]\pm[/math] 3.6 0
21 3 [math]\pm[/math] 1.7 16 [math]\pm[/math] 4 9 [math]\pm[/math] 3 0
22 2 [math]\pm[/math] 1.4 10 [math]\pm[/math] 3.2 2 [math]\pm[/math] 1.4 0
23 0 2 [math]\pm[/math] 1.4 3 [math]\pm[/math] 1.7 1 [math]\pm[/math] 1
24 0 1 [math]\pm[/math] 1 1 [math]\pm[/math] 1 0

NH3Bp positive pion runs

#p.root
pion paddle number x_bj=0.1 x_bj=0.2 x_bj=0.3 x_bj=0.4
4 21 [math]\pm[/math]4.6 15 [math]\pm[/math] 3.9 2 [math]\pm[/math][math]1.4[/math]
5 39 [math]\pm[/math][math]6.2[/math] 58 [math]\pm[/math][math]7.6[/math] 18 [math]\pm[/math][math]4.2[/math]
6 56[math]\pm[/math] [math]7.5[/math] 91 [math]\pm[/math][math]9.5[/math] 49 [math]\pm[/math][math]7[/math]
7 90 [math]\pm[/math][math]9.5[/math] 110[math]\pm[/math] [math]11[/math] 82 [math]\pm[/math][math]9.2[/math] 5 [math]\pm[/math][math]2.2[/math]
8 81[math]\pm[/math] [math]9[/math] 155[math]\pm[/math] [math]12[/math] 78[math]\pm[/math] [math]8.8[/math] 3 [math]\pm[/math][math]1.7[/math]
9 68 [math]\pm[/math]8.1 139[math]\pm[/math] 12 85[math]\pm[/math] 9.2 4[math]\pm[/math] 2
10 83[math]\pm[/math] 9.1 181[math]\pm[/math] 13 88[math]\pm[/math] 9.4 8[math]\pm[/math] 2.8
11 102[math]\pm[/math] 10 164 [math]\pm[/math]13 96[math]\pm[/math] 9.8 8 [math]\pm[/math]2.8
12 103 [math]\pm[/math]10.1 188 [math]\pm[/math]13.7 122[math]\pm[/math] 11 8[math]\pm[/math] 2.8
13 85 [math]\pm[/math]9.2 203 [math]\pm[/math]14.2 132 [math]\pm[/math]11.5 16[math]\pm[/math] 4
14 105[math]\pm[/math] 10.2 219 [math]\pm[/math]14.8 120[math]\pm[/math] 10.9 11 [math]\pm[/math]3.3
15 116[math]\pm[/math] 10.8 192[math]\pm[/math] 13.8 113 [math]\pm[/math]10.6 8 [math]\pm[/math]2.8
16 91 [math]\pm[/math]9.5 208[math]\pm[/math] 14.4 134[math]\pm[/math] 11.6 9[math]\pm[/math] 3
17 98 [math]\pm[/math]9.9 187[math]\pm[/math] 13.7 112[math]\pm[/math] 10.6 9[math]\pm[/math] 3
18 106 [math]\pm[/math]10.3 159 [math]\pm[/math]12.6 121[math]\pm[/math] 11 7 [math]\pm[/math]2.6
19 91 [math]\pm[/math]9.5 166 [math]\pm[/math]12.9 107[math]\pm[/math] 10.3 9[math]\pm[/math] 3
20 83 [math]\pm[/math]9.1 138 [math]\pm[/math]11.7 90 [math]\pm[/math]9.5 7[math]\pm[/math] 2.6
21 81[math]\pm[/math] 9 167 [math]\pm[/math]12.9 110[math]\pm[/math] 10.5 11 [math]\pm[/math]3.3
22 87 [math]\pm[/math]9.3 164 [math]\pm[/math]12.8 84[math]\pm[/math] 9.2 5[math]\pm[/math] 2.2
23 77 [math]\pm[/math]8.8 98[math]\pm[/math] 9.9 73[math]\pm[/math] 8.5 6 [math]\pm[/math]2.4
24 86[math]\pm[/math] 9.3 131[math]\pm[/math] 11.4 81[math]\pm[/math] 9 6[math]\pm[/math] 2.4
25 96 [math]\pm[/math]9.8 185[math]\pm[/math] 13.6 92 [math]\pm[/math]9.6 14[math]\pm[/math] 3.7
26 87 [math]\pm[/math]9.3 147 [math]\pm[/math]12.1 97 [math]\pm[/math]9.8 8 [math]\pm[/math]2.8
27 72[math]\pm[/math] 8.5 132 [math]\pm[/math]11.5 82[math]\pm[/math] 9.1 6 [math]\pm[/math]2.4
28 64[math]\pm[/math] 8 131 [math]\pm[/math]11.4 73 [math]\pm[/math]8.5 10[math]\pm[/math] 3.2
29 46[math]\pm[/math] 6.9 101[math]\pm[/math] 10 53 [math]\pm[/math]7.5 2[math]\pm[/math] 1
30 13[math]\pm[/math] 3.5 14 [math]\pm[/math]3.8 18 [math]\pm[/math]4.8 1 [math]\pm[/math]1


06-02-2010

Electron Efficiency

Chosen electron paddles are following for the positive and negative paddles respectively: 7 and 11.


electroneffbp.root &&  electroneffbn.root


B>0

TH1.Print Name  = Qsqrd, Entries= 323638, Total sum= 323634
fSumw[0]=0, x=-0.2
fSumw[1]=0, x=-0.1
fSumw[2]=0, x=9.71039e-18
fSumw[3]=0, x=0.1
fSumw[4]=3, x=0.2
fSumw[5]=21, x=0.3
fSumw[6]=93, x=0.4
fSumw[7]=285, x=0.5
fSumw[8]=575, x=0.6
fSumw[9]=1148, x=0.7
fSumw[10]=2478, x=0.8
fSumw[11]=9402, x=0.9
fSumw[12]=24380, x=1
fSumw[13]=31648, x=1.1
fSumw[14]=29967, x=1.2
fSumw[15]=27864, x=1.3
fSumw[16]=27157, x=1.4
fSumw[17]=26820, x=1.5
fSumw[18]=25603, x=1.6
fSumw[19]=25027, x=1.7
fSumw[20]=24470, x=1.8
fSumw[21]=23512, x=1.9
fSumw[22]=20320, x=2
fSumw[23]=13453, x=2.1
fSumw[24]=6738, x=2.2
fSumw[25]=2043, x=2.3
fSumw[26]=449, x=2.4
fSumw[27]=119, x=2.5
fSumw[28]=41, x=2.6
fSumw[29]=13, x=2.7
fSumw[30]=5, x=2.8
fSumw[31]=4, x=2.9

B<0

TH1.Print Name = Qsqrd, Entries= 716018, Total sum= 716011

fSumw[0]=0, x=-0.2
fSumw[1]=0, x=-0.1
fSumw[2]=180, x=9.71039e-18
fSumw[3]=112762, x=0.1
fSumw[4]=160348, x=0.2
fSumw[5]=91665, x=0.3
fSumw[6]=62692, x=0.4
fSumw[7]=46135, x=0.5
fSumw[8]=35169, x=0.6
fSumw[9]=28473, x=0.7
fSumw[10]=23810, x=0.8
fSumw[11]=20763, x=0.9
fSumw[12]=18452, x=1
fSumw[13]=16021, x=1.1
fSumw[14]=14494, x=1.2
fSumw[15]=12731, x=1.3
fSumw[16]=11610, x=1.4
fSumw[17]=10422, x=1.5
fSumw[18]=9437, x=1.6
fSumw[19]=8929, x=1.7
fSumw[20]=8149, x=1.8
fSumw[21]=7504, x=1.9
fSumw[22]=6209, x=2
fSumw[23]=4557, x=2.1
fSumw[24]=2948, x=2.2
fSumw[25]=1625, x=2.3
fSumw[26]=659, x=2.4
fSumw[27]=195, x=2.5
fSumw[28]=50, x=2.6
fSumw[29]=18, x=2.7
fSumw[30]=4, x=2.8
fSumw[31]=7, x=2.9

Electron Eff Result

Inclusive detected electrons -vs- Q-squared Inclusive Missing Mass (W) for 1.0 Q^2 <1.2
The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)
The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0


Media:electronefficiencyratioBp7Bn11.txt


Now plot efficiency as function of X_{BJ} and W < 1232 and require pion.

Positive Pion Efficiency dependence on [math]x_bj[/math]

Pion and electron both required.

W<1232 and [math]Q^2=1.1 GeV^2[/math]

Now cut on Q^2 where the inclusive electron rates are the same with both torus settings and then require at least one positive pion.

X_bj B_n/B_p Rates
0.14 0.25 [math]\pm[/math] 0.55
0.15 0.74 [math]\pm[/math] 0.27
0.17 1.07 [math]\pm[/math] 0.18
0.19 1.3 [math]\pm[/math] 0.13
0.2 1.4 [math]\pm[/math] 0.14

There appears to be a region around X_{Bj}= 0.2 which has the same number of pions detected for both torus settings.

Negative Pion Efficiency dependence on [math]Q^2[/math]

Pion and electron both required(e_sector=7 for B>0 && e_sector=11 for B<11).

Now cut on Q^2 where the inclusive electron rates are the same with both torus settings and then require at least one positive pion.


[math]Q^2[/math] B_p/B_n Rates
0.2 0.004 [math]\pm[/math]0.55
0.3 0.017 [math]\pm[/math] 0.5
0.4 0.069[math]\pm[/math] 0.6
0.5 0.0262[math]\pm[/math] 0.6
0.6 0.039[math]\pm[/math] 0.5
0.7 0.1 [math]\pm[/math]0.64
0.8 0.055[math]\pm[/math] 0.52
0.9 0.259[math]\pm[/math] 0.52
1 1.232[math]\pm[/math] 0.52
1.1 3.96[math]\pm[/math] 0.8


There DOES NOT appears to be a region which has the same number of negative pions detected for both torus settings.

What is wrong?

8/13/10

1.) Change Osipenko cuts to maximize electrons when B <0 but still minimize impact of negative pion contamination. Look at effects on Npe distribution.


Insert current number of electron events that are removed by the Osipenko cut for B<0. Compare it to event removed by other cuts.

2.) Schedule Prelim exam.

Shropshire has replaced cole.

Members are: Forest, Fisher, Shropshire, Dale, Tatar(?)

Ask Dustin McNulty



1.) [1]

"Original cut parameters generated by Osipenko et.al. were not very efficient for especially outbending data of eg1b experiment. The loss of electrons was substantial. For inbending data, loss of electrons were at acceptable level. To gain some electrons back we generated new cut parametes that will specifically work better for outbending data. Also we slightly adjusted the cut parameters for inbending data for some sectors and segments."


2.) Upgraded Proposal defense presentation(includes event display) File:TamarProposalP 1.pdf

11/10/10

DTS files used for analysis.

Media:ND3Bn.txt
Media:ND3Bp.txt
Media:NH3Bn.txt
Media:NH3Bp.txt

positive

PISECTORPOSITIVE.gif

negative

PISECTORNEGATIVE.gif

What are the cuts for the above histogram?
 pion, OSI, EC

11/30/10

DST ntuple suggestions

  1. Event number and run number should be recorded. Run number is in RUNINFO. Event number should be in the event packet.
  2. Create variable called helicity and fill it with absolute helicity.

GEM detector

  1. order mylar and copper tape., 1" wide, $20 worth of each
  2. check DPO 4104 see if working properly
  3. find 10 frames for Qweak GEM foils (or order more)
  4. check gas supply

12/6/10

DST ntuple

Run number looks good.

PbPt values are all non-zero now.

1) Some of the TORUS values are zero when they should be positive?

Doesnt matter. There are totally four files: ND3_target+Torus_positive, ND3_target+Torus_negative, NH3_target+Torus_positive and NH3_target+Torus_negative. So not an issue.

2.) Electrons have less than 0.25 GeV energy?

Still dont know.

3.) ASYM=HWP*LINAC*P_T is in the root file.


4.) Where are the FC normalization histograms

Delta_D_over_D

12/20/10

DST

1.) Looks like a particle ID problem for outbending (B<0) negative pions.

Calculate the missing mass for the and stor it in M_X. (included and corrected in NTUPLE)

Redo all the ntuples.

All ntuples are done.

2.) is run 27048 OK (no target run(empty)), corrected for both target runs

3.) Current quarks(the core of the constituent quark without the gluons and sea quarks(covering). The mass of the current quarks(up and down) is 5-10 MeV), light cone?

pion momentum for different torus settings and targets

Outbendingpions.gifInbendingpions.gif


pion paddle number for different torus settings

Outbendingpionspaddlenumber.gifInbendingpionspaddlenumber.gif

ND3npaddlenumber.gif

Need a before and after cuts histogram with stats to see number of events dropped

ND3npaddlenumberwithnphecuts.gif


1/24/2011

1.) Find energy range with substantial ND3, pi- events when B <0.

Ratio plot for Q^2 and X_{BJ}

once you find the Q^2 and X_BJ range holding a reasonable amount of data.



2.) Inclusive electron scattering ratio of

Inclusiveelectrons -vs- Q-squared Inclusive Missing Mass (W) for 1.0 Q^2 <1.2
[[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n) NH3 Target]] [[|300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0]]
[[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)]]ND3 Target [[|300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0]]
[[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)]] Both Targets 300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0

3.) Semi Inclusive pion production ratios -vs- Q^2, Only electron cuts

/cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst2828*


ND3 4.2-

28287 28288 28289 28311 28312 28313 28314 28315 28316 28317 28319 28320 28321 28322 28323 28335 28336 28337 28338 28339 28340 28341 28351 28352 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28385 28386 28389 28390 28391 28392 28393 28394 28396 28397 28398 28399 28400 28401

ND3 4.2+

28074 28075 28076 28077 28078 28079

NH3 4.2-

28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28422 28423 28424 28425 28426 28427 28428 28429 28432 28433 28438 28439 28443 28445 28446 28447 28448 28449 28450 28456 28457 28458 28460 28461 28462 28463 28464 28467 28469 28471 28472 28473 28476 28478 28479


NH3 4.2+

28205 28207 28208 28209 28210 28211 28212 28214 28215 28216 28217 28222 28223 28224 28225 28226 28227 28230 28231 28232 28233 28234 28235 28236 28240 28242 28244 28245 28246 28247 28249 28250 28252 28253 28254 28255 28256 28260 28261 28262 28263 28264 28265 28266 28272 28274 28275 28276 28277

File locations http://www.jlab.org/Hall-B/secure/eg1/EG2000/nevzat/UPGRADE_DST/

/cache/mss/home/nguler/dst

Rates before and after requiring pions

all the cuts are applied, except NPHE>2.5 cut.

NPHE ND3 4 2- nopions.gifNPHE ND3 4 2- withpions.gif

4.2 GeV, ND3 target, 98 files, B<0[math]\frac{\mbox{SemiInclusive Events}}{\mbox{Inclusive Events}}= 14.5% [/math]

NPHE ND3 4 2+ nopions.gifNPHE ND3 4 2+ withpions.gif

4.2 GeV, ND3 target, 32 files, B>0[math]\frac{\mbox{SemiInclusive Events}}{\mbox{Inclusive Events}}= 4.4 %[/math]

The ratio for ND3 4.2 GeV data

Electron paddle selection

Inclusive

ElectronPaddleNumber4 2GeVND3negativewithoutpions.gif ElectronPaddleNumber4 2GeVND3positivewithoutpions.gif
Electron Paddle Number(Inclusive, B<0, 4.2 GeV Beam, ND3 Target) Electron Paddle Number(Inclusive, B>0, 4.2 GeV Beam, ND3 Target)

Semi-Inclusive

ElectronPaddleNumber4 2GeVND3negativewithpions.gif ElectronPaddleNumber4 2GeVND3positivewithpions.gif
Electron Paddle Number(Semi-Inclusive, B<0, 4.2 GeV Beam, ND3 Target) Electron Paddle Number(Semi-Inclusive, B>0, 4.2 GeV Beam, ND3 Target)


B>0, ND3 Electron paddle number=5

B<0, ND3 Electron paddle number=10

The Ratio

X_B [math]\frac{ND3,Epaddle=5,B\gt 0}{ND3,Epaddle=10,B\lt 0}[/math] without pions [math]\frac{ND3,Epaddle=5,B\gt 0}{ND3,Epaddle=10,B\lt 0}[/math] with pions
0.3 [math]1.01 \pm 0.02[/math] [math] 1.2 \pm 0.1[/math]
0.35 [math]1.06 \pm 0.01[/math] [math]1.1 \pm 0.06[/math]
0.4 [math]1.1 \pm 0.01[/math] [math]1.03 \pm 0.08[/math]
0.45 [math]1.1 \pm 0.01[/math] [math]1.1 \pm 0.09[/math]
0.5 [math]0.9 \pm 0.02[/math] [math]0.6 \pm 0.2[/math]
0.55 [math]0.23 \pm 0.06[/math] [math]0.13 \pm 0.5[/math]


The ratio for NH3 4.2 GeV data

Electron paddle selection

Inclusive

ElectronPaddleNumber4 2GeVNH3negativewithoutpions.gif ElectronPaddleNumber4 2GeVNH3positivewithoutpions.gif
Electron Paddle Number(Inclusive, B<0, NH3 target, 4.2 GeV Beam) Electron Paddle Number(Inclusive, B>0, NH3 target, 4.2 GeV Beam)

Semi-Inclusive

ElectronPaddleNumber4 2GeVNH3negativewithpions.gif positive
Electron Paddle Number(Semi-Inclusive, B<0, NH3 target, 4.2 GeV Beam) Electron Paddle Number(Semi-Inclusive, B>0, NH3 target, 4.2 GeV Beam)


B>0, NH3 Electron paddle number=5

B<0, NH3 Electron paddle number=10

The Ratio

X_B [math]\frac{NH3,Epaddle=5,B\gt 0}{NH3,Epaddle=10,B\lt 0}[/math] without pions [math]\frac{NH3,Epaddle=5,B\gt 0}{NH3,Epaddle=10,B\lt 0}[/math] with pions
0.3 [math]1.02 \pm 0.01[/math] [math] 1.2 \pm 0.03[/math]
0.35 [math]1.08 \pm 0.008[/math] [math]1.01 \pm 0.02[/math]
0.4 [math]1.09 \pm 0.009[/math] [math]1.04 \pm 0.02[/math]
0.45 [math]1.19 \pm 0.01[/math] [math]1.1 \pm 0.03[/math]
0.5 [math]0.9 \pm 0.01[/math] [math]0.8 \pm 0.03[/math]
0.55 [math]0.2 \pm 0.03[/math] [math]0.18 \pm 0.09[/math]

1/31/11

Electron paddle number for B>0 is 5 and for B<0 - 10. The cut was applied on [math]X_B[/math] : [math]0.3\lt X_B\lt 0.6[/math]

Inclusive

 Are the ratio's from rates normalized with beam current measured by the FC?
 Is the conclusion that the NH3 and ND3 rates are indistinguishable?

1.) Overlap electron kinematic ([math]\theta[/math], W, Momentum) for B>0 and B<0 and ND3 and NH3.

(NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)

EmomInclusiveoverlay4-2GeV.gif EthetaInclusiveoverlay4-2GeV.gif WInclusiveoverlay4-2GeV.gif
Electron Momentum((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) Electron [math]\theta[/math] Angle((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) W mass((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0))

2.) Now plot ratio (B< 0/B>0) electron kinematic ([math]\theta[/math], W, Momentum) for ND3 and NH3. ( I expect 2 curves in one plot)

[math]\frac{ND3 B\lt 0}{ND3 B\gt 0}[/math], [math]\frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]

Emomratioinclusive4-2GeV.jpg Ethetaratioinclusive4-2GeV.jpg Wratioinclusive4-2GeV.jpg
Electron Momentum([math]\frac{ND3 B\lt 0}{ND3 B\gt 0}[/math], [math]\frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]) Electron [math]\theta[/math] Angle([math]\frac{ND3 B\lt 0}{ND3 B\gt 0}[/math], [math]\frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]) W mass([math]\frac{ND3 B\lt 0}{ND3 B\gt 0}[/math], [math]\frac{NH3 B\lt 0}{NH3 B\gt 0}[/math])

2.) Target ratio (B< 0/B>0) Difference electron kinematic ([math]\theta[/math], W, Momentum) (Ration for ND3 target - Ratio for NH3 target). ( I expect 1 curves in one plot)

[math]\frac{ND3 B\lt 0}{ND3 B\gt 0} - \frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]

Emomratiodiffinclusive4-2GeV.jpg Ethetaratiodiffinclusive4-2GeV.jpg Wratiodiffinclusive4-2GeV.jpg
Electron Momentum ([math]\frac{ND3 B\lt 0}{ND3 B\gt 0} - \frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]) [math]\theta[/math] Theta Angle([math]\frac{ND3 B\lt 0}{ND3 B\gt 0} - \frac{NH3 B\lt 0}{NH3 B\gt 0}[/math]) W mass([math]\frac{ND3 B\lt 0}{ND3 B\gt 0} - \frac{NH3 B\lt 0}{NH3 B\gt 0}[/math])

Semi-Inclusive

(NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)

EmomSemiInclusiveoverlay4-2GeV.gif EthetaSemiInclusiveoverlay4-2GeV.gif WSemiInclusiveoverlay4-2GeV.gif
Electron Momentum((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) Electron [math]\theta[/math] Angle((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) W mass((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0))

2