The goal

Fragmentation Function test

A complete test of independent fragmentation can be performed with polarized proton and neutron targets. The ratio of the difference of polarized to unpolarized cross sections for proton and neutron targets can be written in terms of the structure functions:

1/24/2011

1.) Find energy range with substantial ND3, pi- events when B <0.

Ratio plot for Q^2 and X_{BJ}

once you find the Q^2 and X_BJ range holding a reasonable amount of data.

2.) Inclusive electron scattering ratio of

 Inclusiveelectrons -vs- Q-squared Inclusive Missing Mass (W) for 1.0 Q^2 <1.2 [[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n) NH3 Target]] [[|300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0]] [[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)]]ND3 Target [[|300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0]] [[|300px|thumb|The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)]] Both Targets 300px|thumb|The inclusive missing mass W for each torus setting. Dashed line is B>0 and solid line is B<0

3.) Semi Inclusive pion production ratios -vs- Q^2, Only electron cuts

/cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst2828*

ND3 4.2-

28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28298 28299 28300 28301 28302 28306 28307 28309 28311 28312 28313 28314 28315 28316 28317 28319 28320 28321 28322 28323 28335 28336 28337 28338 28339 28340 28341 28351 28352 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28385 28386 28389 28390 28391 28392 28393 28394 28396 28397 28398 28399 28400 28401

ND3 4.2+

28074 28075 28076 28077 28078 28079 28081 28082 28083 28086 28087 28088 28089 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28106 28107 28108 28109 28110 28111 28112 28113 28115 28145 28146 28147 28148 28149 28152 28154 28158 28166 28167 28168 28171 28172 28180 28181 28182 28185 28186 28187 28188 28189 28190

NH3 4.2-

28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28422 28423 28424 28425 28426 28427 28428 28429 28432 28433 28438 28439 28443 28445 28446 28447 28448 28449 28450 28456 28457 28458 28460 28461 28462 28463 28464 28467 28469 28471 28472 28473 28476 28478 28479

NH3 4.2+

28205 28207 28208 28209 28210 28211 28212 28214 28215 28216 28217 28222 28223 28224 28225 28226 28227 28230 28231 28232 28233 28234 28235 28236 28240 28242 28244 28245 28246 28247 28249 28250 28252 28253 28254 28255 28256 28260 28261 28262 28263 28264 28265 28266 28272 28274 28275 28276 28277

File locations:

/cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst2828*

/cache/mss/home/nguler/dst

Rates before and after requiring pions

all the cuts are applied, except NPHE>2.5 cut.

4.2 GeV, ND3 target, 98 files, B<0

4.2 GeV, ND3 target, 32 files, B>0

The ratio for ND3 4.2 GeV data

Inclusive

 Electron Paddle Number(Inclusive, B<0, 4.2 GeV Beam, ND3 Target) Electron Paddle Number(Inclusive, B>0, 4.2 GeV Beam, ND3 Target)

Semi-Inclusive

 Electron Paddle Number(Semi-Inclusive, B<0, 4.2 GeV Beam, ND3 Target) Electron Paddle Number(Semi-Inclusive, B>0, 4.2 GeV Beam, ND3 Target)

The Ratio

 X_B without pions with pions 0.3 0.35 0.4 0.45 0.5 0.55

The ratio for NH3 4.2 GeV data

Inclusive

 Electron Paddle Number(Inclusive, B<0, NH3 target, 4.2 GeV Beam) Electron Paddle Number(Inclusive, B>0, NH3 target, 4.2 GeV Beam)

Semi-Inclusive

 Electron Paddle Number(Semi-Inclusive, B<0, NH3 target, 4.2 GeV Beam) Electron Paddle Number(Semi-Inclusive, B>0, NH3 target, 4.2 GeV Beam)

The Ratio

 X_B without pions with pions 0.3 0.35 0.4 0.45 0.5 0.55

1/31/11

Electron paddle number for B>0 is 5 and for B<0 - 10. The cut was applied on  :

Inclusive

1.) Overlap electron kinematic (, W, Momentum) for B>0 and B<0 and ND3 and NH3.

(NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)

 Electron Momentum((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) Electron Angle((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)); can create angle cut on electron to be sure flipping B-field contains same electrons W mass((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0))

2.) Now plot ratio (B< 0/B>0) electron kinematic (, W, Momentum) for ND3 and NH3. ( I expect 2 curves in one plot)

,

 Electron Momentum(, ) Electron Angle(, ) W mass(, )

2.) Target ratio (B< 0/B>0) Difference electron kinematic (, W, Momentum) (Ration for ND3 target - Ratio for NH3 target). ( I expect 1 curves in one plot)

 Electron Momentum () Theta Angle() W mass()

Semi-Inclusive

(NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)

 Electron Momentum((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) Electron Angle((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0)) W mass((NH3,B>0), (NH3,B<0), (ND3,B>0) && (ND3,B<0))

2

2/7/11

1.) Now look a specific electron kinematic which appear to have unity ratio. P=2.5 GeV, \theta =18 degrees

 W NH3,B<0 NH3,B>0 ND3,B<0 ND3,B>0 NH3,B>0 - NH3,B<0 NH3,B>0 - NH3,B<0 1.72 1.7 -9.7 1.74 3 5.1 -3.2 1.76 5.0 -43.6 1.78 4.2 -33.1 1.8 0.8 -5.2

2.) Semi-Inclusive using above electrons

3.) Semi-Inclusive using above electrons and choosing a single paddle from 2.)

2/14/11

1.) Get all files

2.) Do semi-inclusive paddle number for pions again

3.) Paddle Number ratio (with more files in order to double check, the same cuts on electrons)

2/23/11

1.) Plot pi^-/pi^+ -vs paddle #

2.) Paddle 7 has ratio 0f 0.9. Plot W, Q^2 and M_{\pi}

W

Q^2

3.) Paddle 25 has ratio 0f 0.3. Plot W, Q^2, M (our goal is to determine if the detector has same efficiency for detector same reaction when the Torus filed is flipped)

W

Q^2

3/04/11

Table. 1 Pion Paddle Number ratio

• 1.) ND3Bn/NH3Bp
 Pion Paddle Number Number of Events ND3Bn Number of Events NH3Bp Ratio(ND3Bn/NH3Bp) error 3.89 81 69 0.4 0.000896 4.89 84 87 0.33 0.000595 5.89 84 76 0.38 0.000757 6.89 75 98 0.26 0.000488 7.89 91 123 0.25 0.000348 8.89 115 141 0.28 0.000283 9.89 207 254 0.28 0.000117 10.89 212 300 0.24 0.000092 11.89 284 413 0.24 0.000057 12.89 322 501 0.22 0.000043 13.89 359 521 0.24 0.000040 14.89 365 565 0.22 0.000036 15.89 415 523 0.27 0.000040 16.89 444 526 0.29 0.000039 17.89 405 555 0.25 0.000036 18.89 414 528 0.27 0.000039 19.89 387 502 0.27 0.000042 20.89 408 505 0.28 0.000042 21.89 352 457 0.27 0.000048 22.89 298 358 0.29 0.000070 23.89 522 547 0.33 0.000038 24.89 530 608 0.3 0.000032 25.89 571 590 0.33 0.000034 26.89 523 564 0.32 0.000036 27.89 422 440 0.33 0.000052 28.89 368 342 0.37 0.000079 29.89 101 108 0.32 0.000427

• 2.) ND3Bp/NH3Bn
 Pion Paddle Number Number of Events ND3Bp Number of Events NH3Bn Ratio(ND3Bp/NH3Bn) error 0.91 45 89 1.29 0.004556 1.91 86 127 1.73 0.002488 2.91 82 133 1.58 0.002361 3.91 91 330 0.71 0.000822 4.91 94 348 0.69 0.000766 5.91 125 360 0.89 0.000649 6.91 120 399 0.77 0.000594 7.91 148 443 0.86 0.000484 8.91 128 387 0.85 0.000595 9.91 121 510 0.61 0.000459 10.91 104 417 0.64 0.000607 11.91 145 449 0.83 0.000481 12.91 108 469 0.59 0.000528 13.91 113 449 0.64 0.000541 14.91 104 401 0.66 0.000631 15.91 98 427 0.59 0.000609 16.91 100 335 0.76 0.000774 17.91 70 316 0.57 0.000973 18.91 65 269 0.62 0.001189 19.91 56 270 0.53 0.001273 20.91 37 200 0.47 0.002111 21.91 27 149 0.46 0.003316 22.91 28 99 0.72 0.004942 23.91 32 112 0.73 0.004087 24.91 42 103 1.04 0.003963 25.91 25 70 0.91 0.007479 26.91 24 66 0.93 0.008105 27.91 27 39 1.77 0.014578 28.91 24 48 1.28 0.011546

W

Q^2

W

Q^2

3/21/11

1.) Efficiency Ratios.

• 0.a.) Table .
 Pion Paddle Number error 1 0.52 0.00188670 2 0.56 0.00075818 3 0.55 0.00080325 4 1.31 0.00152123 5 1.44 0.00158249 6 1.18 0.00084919 7 1.26 0.00096229 8 1.19 0.00066468 9 1.12 0.00077990 10 1.5 0.00113494 11 1.45 0.00137556 12 1.22 0.00070398 13 1.65 0.00147872 14 1.47 0.00122783 15 1.63 0.00154233 16 1.57 0.00162007 17 1.38 0.00138704 18 1.68 0.00288459 19 1.68 0.00321234 20 1.65 0.00394896 21 2.23 0.00993885 22 2.42 0.01726570 23 1.29 0.00877380 24 1.17 0.00650948 25 0.74 0.00280451 26 1 0.00808644 27 1.25 0.01073753 28 0.84 0.00615573 29 1.11 0.00957284

• 0.b.) Table .
 Pion Paddle Number error 1 0.61 0.00136217 2 0.58 0.00072875 3 0.56 0.00063600 4 1.16 0.00084147 5 1.09 0.00067329 6 1.22 0.00084552 7 1.26 0.00077718 8 1.3 0.00071299 9 1.35 0.00095814 10 1.91 0.00150046 11 1.6 0.00131397 12 1.32 0.00072210 13 1.71 0.00129895 14 1.46 0.00093334 15 1.93 0.00219770 16 1.76 0.00160711 17 1.29 0.00106561 18 1.63 0.00205808 19 1.49 0.00210549 20 1.87 0.00366838 21 2.01 0.00692445 22 1.73 0.00746426 23 1.51 0.00978854 24 1.5 0.00801872 25 1.01 0.00349049 26 0.86 0.00424348 27 1.04 0.00729985 28 0.69 0.00620402 29 1.12 0.01390308

Perhaps we see if the MAID model can tell us what this ratio should be


• 1.) Table 1.
 Pion Paddle Number error 1 77 65 0.4075770 0.0009842584 2 159 97 0.5639721 0.0006539302 3 149 105 0.4882354 0.0005272353 4 393 126 1.0731347 0.0007711509 5 444 141 1.0834182 0.0006573745 6 484 130 1.2809561 0.0008725428 7 496 140 1.2189500 0.0007440855 8 578 151 1.3169920 0.0007160697 9 471 127 1.2759964 0.0009002428 10 599 118 1.7465341 0.0013677534 11 497 115 1.4869309 0.0012131589 12 582 151 1.3261062 0.0007208959 13 588 121 1.6719536 0.0012616248 14 546 136 1.3812936 0.0008776225 15 558 92 2.0867894 0.0023701069 16 505 107 1.6238274 0.0014740763 17 454 115 1.3582830 0.0011103103 18 388 86 1.5522638 0.0019569046 19 359 80 1.5439624 0.0021696589 20 304 64 1.6342777 0.0032068058 21 272 44 2.1269069 0.0073027548 22 215 38 1.9466466 0.0083331144 23 119 29 1.4118261 0.0091055132 24 123 33 1.2823997 0.0068297700 25 102 45 0.7798659 0.0026920919 26 82 36 0.7836887 0.0037785779 27 99 28 1.2164924 0.0083029104 28 75 25 1.0321754 0.0084089279 29 88 19 1.5935340 0.0193377338 30 43 10 1.4794514 0.0470776577 31 30 5 2.0643508 0.1850680665 32 59 17 1.1940853 0.0172383351 33 83 24 1.1898689 0.0102416449 34 85 26 1.1248065 0.0086048876 35 93 24 1.3332266 0.0114363482 36 79 23 1.1817660 0.0108450951 37 34 9 1.2997764 0.0485842596 38 32 20 0.5504936 0.0068650227 39 38 4 3.2685555 0.4088076301 40 12 4 1.0321754 0.1313894981 41 30 10 1.0321754 0.0332392060 42 5 3 0.5734308 0.1216930868

• 2.) Table 2.
 paddleNumber error 1 59 5 30.21 2.70258040 2 79 14 14.45 0.27652327 3 73 8 23.36 1.03300637 4 65 59 2.82 0.00822726 5 55 49 2.87 0.01094524 6 80 52 3.94 0.01185748 7 65 49 3.4 0.01183225 8 113 75 3.86 0.00675056 9 117 72 4.16 0.00756073 10 200 115 4.45 0.00393821 11 226 166 3.49 0.00192550 12 328 178 4.72 0.00213914 13 391 259 3.86 0.00105330 14 360 287 3.21 0.00081064 15 389 278 3.58 0.00090286 16 426 274 3.98 0.00098738 17 437 284 3.94 0.00092912 18 444 241 4.72 0.00135761 19 419 291 3.69 0.00085791 20 397 329 3.09 0.00064841 21 407 286 3.64 0.00087414 22 346 260 3.41 0.00096976 23 274 235 2.98 0.00105807 24 430 361 3.05 0.00056086 25 478 388 3.15 0.00051121 26 471 390 3.09 0.00050259 27 420 385 2.79 0.00049185 28 342 326 2.69 0.00062326 29 266 280 2.43 0.00076396 30 78 103 1.94 0.00337017 31 33 29 2.91 0.02416684 32 34 30 2.9 0.02293226 33 32 32 2.56 0.01999906 34 28 30 2.39 0.02171314 35 17 22 1.98 0.03411592 36 21 14 3.84 0.08345855 37 7 9 1.99 0.13036518 38 27 20 3.46 0.04582149 39 24 33 1.86 0.01863261 40 31 35 2.27 0.01710150 41 76 71 2.74 0.00617114 42 16 31 1.32 0.02201769 43 18 22 2.09 0.03411970 44 23 18 3.27 0.05209530

• 3.) Table 3.
 Pion Paddle Number error 0.91 45 89 1.29 0.004556 1.91 86 127 1.73 0.002488 2.91 82 133 1.58 0.002361 3.91 91 330 0.71 0.000822 4.91 94 348 0.69 0.000766 5.91 125 360 0.89 0.000649 6.91 120 399 0.77 0.000594 7.91 148 443 0.86 0.000484 8.91 128 387 0.85 0.000595 9.91 121 510 0.61 0.000459 10.91 104 417 0.64 0.000607 11.91 145 449 0.83 0.000481 12.91 108 469 0.59 0.000528 13.91 113 449 0.64 0.000541 14.91 104 401 0.66 0.000631 15.91 98 427 0.59 0.000609 16.91 100 335 0.76 0.000774 17.91 70 316 0.57 0.000973 18.91 65 269 0.62 0.001189 19.91 56 270 0.53 0.001273 20.91 37 200 0.47 0.002111 21.91 27 149 0.46 0.003316 22.91 28 99 0.72 0.004942 23.91 32 112 0.73 0.004087 24.91 42 103 1.04 0.003963 25.91 25 70 0.91 0.007479 26.91 24 66 0.93 0.008105 27.91 27 39 1.77 0.014578 28.91 24 48 1.28 0.011546

• 4.) Table 4.

 Pion Paddle Number error 3.89 81 69 0.4 0.000896 4.89 84 87 0.33 0.000595 5.89 84 76 0.38 0.000757 6.89 75 98 0.26 0.000488 7.89 91 123 0.25 0.000348 8.89 115 141 0.28 0.000283 9.89 207 254 0.28 0.000117 10.89 212 300 0.24 0.000092 11.89 284 413 0.24 0.000057 12.89 322 501 0.22 0.000043 13.89 359 521 0.24 0.000040 14.89 365 565 0.22 0.000036 15.89 415 523 0.27 0.000040 16.89 444 526 0.29 0.000039 17.89 405 555 0.25 0.000036 18.89 414 528 0.27 0.000039 19.89 387 502 0.27 0.000042 20.89 408 505 0.28 0.000042 21.89 352 457 0.27 0.000048 22.89 298 358 0.29 0.000070 23.89 522 547 0.33 0.000038 24.89 530 608 0.3 0.000032 25.89 571 590 0.33 0.000034 26.89 523 564 0.32 0.000036 27.89 422 440 0.33 0.000052 28.89 368 342 0.37 0.000079 29.89 101 108 0.32 0.000427

Corrected one just has values of 1.

2.) Kinematic plots for all 8 conditions

4/4/11

1.) Document the electron efficiency -vs- paddle ( for each target separately) and pion efficiency -vs- paddle in thesis

 Inclusive detected electrons -vs- Q-squared The ratio of inclusive electrons detected in scintillator paddle #7 when Btorus >0 (B_p)to inclusive electrons detected by paddle 11 when B<0(B_n)

*Inclusive

• Semi Inclusive

2.) Compare to MAI2007 for paddles with unity pion efficiency ratios

Total Cross Section:

where

is pion azimuthal angle in CM frame, - virtual photon polarization.

where , (the difference between the initial and final energy of the electron).

- Four momentum transferred square.

- electron scattering angle.

h - electron helicity.

where

5/11/11

1.) Document the electron efficiency -vs- paddle ( for each target separately) and pion efficiency -vs- paddle in thesis

Zoom in on the Q^2 range from 0.9 to 1.3 fine binning.


3.)

MAID is the dominant error?  The data agree with MAID statistically.

Yes it is.


5/23/11

1.) Detector is not working. Two GEM foils are packed for shipping. The current measured across the GEM Foils at ~120 Volts is 1-5 nAmp.

5/25/11

In this case, corrections from the inclusive data are applied.

6/27/11

1.) Analyze data for asymmetries.

a.) Charge asymmetry -vs- run number plot

b.) Rate sums and difference plots i.) Insert histogram names here and their definitions

2.)Histograms for error calculation

3.) Dilution factor histogram names and definition

07/23/11

Make it easier to see the differences.  Subtract experiment from Maid2007 and put
the before and after corrections results on the same graph.
Use different error bars for the error from the correction factor
and the statistical uncertainties (1/sqrt(N).


Exclusive cases

07/28/11

• 1.) Pion Paddle number vs ratio for MAID2007-Experiment :

You need to make the above graph in black and white then it will be ready for your thesis.
This means you need to change the error bars so you can identify them when they
are in black and white.

I would conclude from the above that the correction does not impact inclusive single pion production while it does make the semi-inclusive data less dependent on Torus polarity.

You should add the systematic error as a separate uncertainty to the graph.
Usually you can remove the riser from the larger uncertainty and include the riser (the horizontal bar) on the smaller uncertainty..


• 2.) Charge Asymmetry:
You have a choice for the charge asymmetry, either do a linear fit to run number
or average over all runs.  I prefer averaging over all runs and displaying it as a
histogram for the data set to measure false asymmetries from the beam alone


ND3Bn

08/01/11

Charge Asymmetry

• 1). ND3Bp

• 2). NH3Bn

• 3). NH3Bp

Average charge(beam) Asymmetry:

Add some text describing the difference in the charge asymmetry plots.
I dont understand what makes the plot below so different from the ones above.


Calculating and

This calculation will contain many terms.  It may be best to break it up into several parts.


9/30/11 DST copies from JLab

I copied the following from the JLab cache disk to isulinux1

outbending

scp /cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst2828* isulinux1:/local/scratch/tforest/4.2negND3

scp /cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst283* isulinux1:/local/scratch/tforest/4.2negND3

scp /cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst2829* isulinux1:/local/scratch/tforest/4.2negND3

scp /cache/mss/clas/eg1b/production/pass1/v4/4p2out/misc/dst/dst284* isulinux1:/local/scratch/tforest/4.2negNH3

in bending

scp /w/cache/mss/home/nguler/dst/dst282* isulinux1:/local/scratch/tforest/4.2PosNH3

scp /w/cache/mss/home/nguler/dst/dst281* isulinux1:/local/scratch/tforest/4.2PosND3

10/7/11 sftp file copying

Another way to copy files from JLab is to copy them from the /cache disk to the /u/scratch disk and then sftp them from JLab.

sftp username@ftp.jlab.org
cd /u/scratch/tforest
mget *


01/30/12

Charge Asymmetry

In double spin asymmetry measurements it is important to eliminate any source of false asymmetry, like charge asymmetry. The helicity of the electron beam was flipped with a rate of 1 HZ and its original state was chosen at the injector in a pseudo-random way. The next state of the electron helicity, so called complement state, is always with opposite helicity. The diagram on Fig. 3.1 represents the helicity state.

 Figure 3.1. The Helicity State

A one bit signal from the beam injector gives the helicity information, whereas a sync bit with a 2 HZ frequency is generated at the same time and is equal to the helicity flip time. However, the electron beam helicity sequence can be interrupted by the Data Acquisition System(DAQ), like leaving unpaired helicity states and dead time problems. In order to eliminate the asymmetry caused by the DAQ, the Faraday cup was installed to measure the charge simultaneously with the helicity state flip. The stored data files include accumulated charge value for each helicity state. The measured charge asymmetry is shown bellow for 4.2 GeV data that has been collected for ND3 target while torus magnetic field was negative.

 Figure 3.2. Run Number vs Charge Asymmetry (ND3 target, B<0)

The charge asymmetry measured for each run number, thats is used for this analysis is shown on Fig. 3.3.

 Black and red data points represent uncorrected measured charge asymmetry using Faraday cup. The green line shows the sign of half wave plane, while the purple one the sign of target polarization. Run groups vs measured charge asymmetry. The runs that have the same half wave plane, target polarization sign, target type and torus current were combined into one data point.

 Figure 3.2. Run Number vs Charge Asymmetry for All Runs
Charge Asym no sign correction

The uncertainty should be the same for the (1-4) and (2-3) distributions in the same run group.  Use 12 groups of files (slugs) to create a histogram of the asymemtry and fit it with a gaussian.


Inclusive asymmetry as a function of X_B for all is shown on Fig. 3.4. The electron paddle numbers 10 and 5 were chosen respectively for B<0 and B>0, because they contained the most electron events in a first pass semi-inclusive pion analysis of the data set.

inclusive includes sign correction


For inclusive do run number vs inclusive Asymmetry


 Figure 3.4. X_{bjorken} vs Inclusive Asymmetry(All data)

02/06/12

Charge Asymmetry

In double spin asymmetry measurements it is important to eliminate any source of false asymmetry, like charge asymmetry. The helicity of the electron beam was flipped with a rate of 1 HZ and its original state was chosen at the injector in a pseudo-random way. The next state of the electron helicity, so called complement state, is always with opposite helicity. The diagram on Fig. 3.1 represents the helicity state.

 Figure 3.1. The Helicity State

A one bit signal from the beam injector gives the helicity information, whereas a sync bit with a 2 HZ frequency is generated at the same time and is equal to the helicity flip time. However, the electron beam helicity sequence can be interrupted by the Data Acquisition System(DAQ), like dead time problems. In order to eliminate the asymmetry caused by the DAQ, the Faraday cup was installed to measure the charge simultaneously with the helicity state flip. The stored data files include accumulated charge value for each helicity state. The measured charge asymmetry is shown bellow for 4.2 GeV data that has been collected for ND3 target while torus magnetic field was negative.

 Figure 3.2. Run Number vs Charge Asymmetry (ND3 target, B<0)

The charge asymmetry measured for each run number, thats is used for this analysis is shown on Fig. 3.3.

 Black and red data points represent uncorrected measured charge asymmetry using Faraday cup. The green line shows the sign of half wave plane, while the purple one the sign of target polarization. Run groups vs measured charge asymmetry. The runs that have the same half wave plane, target polarization sign, target type and torus current were combined into one data point.

 Figure 3.2. Run Number vs Charge Asymmetry for All Runs

Inclusive asymmetry as a function of X_B for all is shown on Fig. 3.4. The electron paddle numbers 10 and 5 were chosen respectively for B<0 and B>0, because they contained the most electron events in a first pass semi-inclusive pion analysis of the data set.

 Figure 3.4. X_{bjorken} vs Inclusive Asymmetry(All data)

The Figures 3.5 and 3.6 show inclusive asymmetry for each run number and for run groups used for these analysis

 Figure 3.5. Run Number vs Inclusive Asymmetry
 Figure 3.5. Run groups vs Inclusive Asymmetry

03/06/12

NES Asymmetry

The double spin asymmetry measurements performed in this thesis are performed by comparing scattering events that occur when the incident probe spin and nuclear target spin are parallel to scattering events that occur when the spins are anti-parallel. The helicity of the electron beam was flipped at a rate of 1 HZ. The helicity is prepared at the source such that helicity pairs are produced pseudo randomly. If the first electron bunch is pseudo randomly chosen to be positive (negative) then it is labeled as the original helicity state and denoted in software by a 2 (1). The next helicity state is prepared to be a complement to the first state and labeled in the software as either a 4, if the original helicity state was a 1 (negative), or 3 if the original helicity state was a 2 (positive). The helicity process is then repeated. Figure NES.1 illustrates the signals used to label helicity state. The clock pulse (SYNC) is used to indicate that a change in the pockel cell used to define the helicity state may have occurred. The helicity bit indicates the helicity state that was set. The original/complement pulse identifies if the state is an original or complement helicity state. All three bits are recorded in the raw data file for each event and then converted to the labels 1,2,3,4 during DST file production once the particles have been reconstructed.

 Figure NES.1. The Helicity State: A one bit signal from the beam injector gives the helicity information, whereas a sync bit with a 2 HZ frequency is generated at the same time and is equal to the helicity flip time.

Two scalers were used to record several ancillary detectors, such as a Faraday cup and several PMTs mounted on the beam line, according to their helicity label. One of the scalers was gated by the DAQ live time in order to record beam conditions when the DAQ was able to take data and not busy recording data. The second scaler remained ungated. Both scalers recorded the SYNC and Helicity signals from the injector along with the counts observed from ancillary detectors during the SYNC interval. The Faraday cup signal recorded by the gated helicity scaler is used to normalize the events reconstructed during the same helicity interval. The beam charge asymmetry measured by the gated helicity scaler is shown in Figure NES. 2. as a function of run number. For each run number the gaussian fit was used to extract the mean values of the asymmetry and corresponding error(Figure NES. 3).

 Figure NES. 2. Run Number vs the beam charge Asymmetry

 Figure NES. 3. Beam charge asymmetry for run #28101 using the gated faraday cup counts for two helicity pairs(1-4 and 2-3 helicity pairs). and

 Run Group Half wave plane(HWP) 28100 - 28105 +1 28106 - 28115 -1 28145 - 28240 +1 28242 - 28284 -1 28286 - 28324 +1 28325 - 28447 -1 28449 - 28479 +1

A measurement of the electron cross section helicity difference needs to account for the possible helicity dependence of the incident electron flux ( Charge Asymmetry). Fig. NES. 4 shows the reconstructed electron asymmetry before it is normalized by the gated Faraday Cup as a function of the run number for the 4.2 GeV data set. The reconstructed electron asymmetry can be defined following way:

or

where () represents number of reconstructed electrons in the final state for the positive(negative) beam helicity.

 Run Number vs NES Asymmetry before FC normalization. The red points represent NES asymmetry for the helicity 2-3 pair and the black points - the helicity pair 1-4. The green line shows the sing of the half wave plane and purple line - the sign of the target polarization.

 Figure NES.4. Run Number vs NES Asymmetry for All Runs before FC normalization

Sysstematic effects on the asymmetry measurement may be investigated by separating the data into two groups based on which helicity state is set first. The first group(black data points) represents the electron asymmetry observed when the first (original) helicity state is negative and its complement state is positive(helicity state #1 - state #4). The second group(red data points) represents the asymmetry observed, when the first state is positive and the complement state is negative(helicity state #2 - #3). Both groups were divided into two subgroups based the target type used. The diamond points on the histogram represent the data for the NH3 target and the squares for the ND3 target. On the same histograms are presented the signs of the half wave plane(HWP) and the target polarization(TPol). The relative spin orientation can be changed by either inserting a half wave (HWP) or by populating a different target polarization state with a different RF frequency. One would expect the asymmetry to change sign if either the HWP is inserted or the target polarization is rotated 180 degrees. As one can see, the electron asymmetry sign ( sign(hel1-hel4) && sign(hel3-hel2) ) is opposite of the sign of (HWPTarget_Polarization). The NES asymmetry has been calculated the following way before accounting for the Faraday cup:

The NES asymmetry after the gated faraday cup normalization is defined as:

 Run Number vs NES Asymmetry after applying FC normalization. The red points represent NES asymmetry for the helicity 2-3 pair and the black points - the helicity pair 1-4. The green line shows the sing of the half wave plane and purple line - the sign of the target polarization.

 Figure NES.5. Run Number vs NES Asymmetry for All Runs after FC normalization

On the Fig. NES. 6 data runs are combined for the same target type, target polarization, beam torus and half wave plane.

 Figure NES. 6. Run groups vs NES Asymmetry before and after FC Normalization

03/12/12

SIDIS Asymmetry

SIDIS asymmetries:

 Figure NES. 6. Run Number vs Semi inclusive asymmetry before FC Normalization.

 Figure NES. 6. Run Number vs Semi inclusive asymmetry after FC Normalization.

 Target type, Beam Torus sign (B) NH3, B>0, NH3, B<0, ND3, B>0, ND3, B<0, NH3, B>0, NH3, B<0, ND3, B>0, ND3, B<0,

 Run Group Target type, Beam Torus sign (B) A_{1-4} A_{2-3} 28214 - NH3, B>0 0.02399480 \pm 0.01700174 28231 - NH3, B>0 -0.01372286 \pm 0.01559729  28252 - NH3, B>0 -0.00048034 \pm 0.01685103 28266 - NH3, B>0 -0.02002048 \pm 0.01610756 28413 - NH3, B<0 0.02205009 \pm 0.01799869 -0.02291024 \pm 0.01795956 28469 - NH3, B<0 0.02270121 \pm 0.01543980 -0.02662038 \pm 0.01532731 28102 - ND3, B>0 0.04443768 \pm 0.06093347 0.01055158 \pm 0.06066387 28109 - ND3, B>0 0.01068017 \pm 0.03953670 -0.00764924 \pm 0.03970762 28150 - ND3, B>0 -0.01238850 \pm 0.03640693 0.02901657 \pm 0.03642766 28182 - ND3, B>0 -0.02497960 \pm 0.02660287 0.00797540 \pm 0.02634698 28295 - ND3, B<0 -0.01323095 \pm 0.01636848 -0.01008145 \pm 0.01636433 28315 - ND3, B<0 -0.01026453 \pm 0.01768742 0.00621953 \pm 0.01758502 28393 - ND3, B<0 0.01615151 \pm 0.01853525 -0.00719786 \pm 0.01834110
 Figure NES. 6. Run groups vs Semi inclusive asymmetry after FC Normalization.

X and Z count distribution

 SIDI Asymmetry

 0.3 0.5 0.7 0.9

 0.45 0.7 0.9
 0.3 0.5 0.7 0.9

"If each observable () is accompanied by an estimate of the uncertainty in that observable () then the weighted mean is defined as

"

"The variance of the distribution is defined as

= weighted variance"
 0.3 0.5 0.7 0.9
 Table 4.5. Experimental Results of The Fragmentation Function vs and for four values of .

 0.45 0.85
 Table 4.6. Experimental Results of The Fragmentation Function vs and (Combined ).

 0.8 2.4 0.344712 0.089457 1.215956 0.8 2.56 0.322805 0.087636 1.144319 0.8 2.72 0.302941 0.087324 1.142601 0.8 2.89 0.284872 0.080418 1.081259 0.8 3.06 0.268386 0.046144 0.971948 0.8 3.24 0.253303 -0.001413 0.904000 0.8 3.42 0.239465 -0.039615 0.888457 0.85 2.4 0.358532 0.095124 1.179011 0.85 2.56 0.336197 0.092376 1.118478 0.85 2.72 0.315894 0.091414 1.126200 0.85 2.89 0.297382 0.083684 1.073062 0.85 3.06 0.280456 0.047397 0.965145 0.85 3.24 0.264940 0.000751 0.897095 0.85 3.42 0.250680 -0.037185 0.879470 0.9 2.4 0.371781 0.101758 1.124929 0.9 2.56 0.349070 0.097293 1.077209 0.9 2.72 0.328374 0.095640 1.097502 0.9 2.89 0.309461 0.087175 1.064119 0.9 3.06 0.292134 0.050127 0.968564 0.9 3.24 0.276219 0.003136 0.902680 0.9 3.42 0.261569 -0.034673 0.882556 0.95 2.4 0.384494 0.107726 1.079087 0.95 2.56 0.361453 0.102269 1.040995 0.95 2.72 0.340407 0.099848 1.072015 0.95 2.89 0.321133 0.090544 1.055804 0.95 3.06 0.303439 0.052833 0.971023 0.95 3.24 0.287158 0.005393 0.907107 0.95 3.42 0.272146 -0.032200 0.884625 1 2.4 0.396703 0.113466 1.036707 1 2.56 0.373374 0.106727 1.007923 1 2.72 0.352016 0.103726 1.047463 1 2.89 0.332416 0.093605 1.045933 1 3.06 0.314388 0.055305 0.970792 1 3.24 0.297772 0.007453 0.909048 1 3.42 0.282424 -0.029966 0.884723 1.05 2.4 0.408437 0.118939 0.992592 1.05 2.56 0.384858 0.111105 0.971331 1.05 2.72 0.363224 0.107103 1.019267 1.05 2.89 0.343330 0.095852 1.029986 1.05 3.06 0.324999 0.057266 0.964081 1.05 3.24 0.308073 0.009820 0.906637 1.05 3.42 0.292416 -0.027198 0.883994 1.1 2.4 0.419723 0.125251 0.947155 1.1 2.56 0.395929 0.115416 0.938049 1.1 2.72 0.374051 0.110297 0.993433 1.1 2.89 0.353894 0.098076 1.014245 1.1 3.06 0.335286 0.059359 0.956429 1.1 3.24 0.318077 0.012982 0.905373 1.1 3.42 0.302133 -0.024350 0.882958 1.15 2.4 0.430586 0.130979 0.910430 1.15 2.56 0.406608 0.119423 0.907506 1.15 2.72 0.384515 0.113163 0.969323 1.15 2.89 0.364122 0.100019 0.998793 1.15 3.06 0.345265 0.061046 0.948539 1.15 3.24 0.327796 0.015164 0.901680 1.15 3.42 0.311587 -0.021709 0.880861 1.2 2.4 0.441050 0.136174 0.877989 1.2 2.56 0.416916 0.123376 0.879867 1.2 2.72 0.394636 0.116022 0.947092 1.2 2.89 0.374032 0.101867 0.984262 1.2 3.06 0.354948 0.062766 0.940538 1.2 3.24 0.337242 0.017174 0.897860 1.2 3.42 0.320789 -0.019216 0.878344 1.25 2.4 0.451137 0.141522 0.851328 1.25 2.56 0.426872 0.127836 0.854448 1.25 2.72 0.404429 0.119066 0.924399 1.25 2.89 0.383638 0.104151 0.966286 1.25 3.06 0.364349 0.064626 0.929040 1.25 3.24 0.346426 0.019518 0.890588 1.25 3.42 0.329748 -0.016436 0.873707 1.3 2.4 0.460866 0.146979 0.827067 1.3 2.56 0.436494 0.131843 0.832123 1.3 2.72 0.413910 0.122206 0.903273 1.3 2.89 0.392954 0.106218 0.949548 1.3 3.06 0.373480 0.066537 0.917721 1.3 3.24 0.355358 0.021675 0.883594 1.3 3.42 0.338473 -0.013711 0.868901 1.35 2.4 0.470256 0.151920 0.806259 1.35 2.56 0.445798 0.135925 0.812231 1.35 2.72 0.423094 0.125351 0.884403 1.35 2.89 0.401992 0.108521 0.933955 1.35 3.06 0.382352 0.068511 0.907321 1.35 3.24 0.364050 0.023938 0.877039 1.35 3.42 0.346974 -0.011047 0.864389

 Table 4.7. .

 , 0.006584 0.004943 , 0.006382 0.004355 , 0.005769 0.004544 , 0.005856 0.004021 , 0.002893 0.002574 , 0.001664 0.001361 , 0.002673 0.002399 , 0.001565 0.001307

 , 0.00611464 0.00545206 , 0.00428864 0.00330646 , 0.00552027 0.00392858 , 0.00552027 0.00392858 , 0.00265003 0.00282080 , 0.00097612 0.00090184 , 0.00264221 0.00243020 , 0.00154130 0.00128547

 Table 4.7. Average .

 0.45 0.7