Difference between revisions of "Circular Cross Sections"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "==Circular Conic Section== If the conic is an circle, e=0. This implies <center><math>e=\frac{\sin (\beta)}{\sin (\alpha)}=\frac{\sin (25^{\circ})}{\sin (90-\theta)}=0</math><…")
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Conic_Sections|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Elliptical_Cross_Sections|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 
==Circular Conic Section==
 
==Circular Conic Section==
 
If the conic is an circle, e=0.  This implies  
 
If the conic is an circle, e=0.  This implies  
Line 8: Line 16:
  
 
<center><math>sin(90^{\circ}-\theta)=cos(\theta)</math></center>
 
<center><math>sin(90^{\circ}-\theta)=cos(\theta)</math></center>
 +
  
 
<center><math>\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty</math></center>
 
<center><math>\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty</math></center>
Line 13: Line 22:
  
 
The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility.
 
The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility.
 +
 +
 +
----
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Conic_Sections|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Elliptical_Cross_Sections|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 20:22, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Circular Conic Section

If the conic is an circle, e=0. This implies

[math]e=\frac{\sin (\beta)}{\sin (\alpha)}=\frac{\sin (25^{\circ})}{\sin (90-\theta)}=0[/math]


Using the relation

[math]sin(90^{\circ}-\theta)=cos(\theta)[/math]


[math]\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty[/math]


The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility.




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]