Rigid Body Motion
Rigid Body
- Rigidy Body
- A Rigid Body is a system involving a large number of point masses, called particles, whose distances between pairs of point particles remains constant even when the body is in motion or being acted upon by external force.
- Forces of Constraint
- The internal forces that maintain the constant distances between the different pairs of point masses.
Total Angular Momentum of a Rigid Body
Consider a rigid body that rotates about a fixed z-axis with the origin at point O.
INSERT PICTURE HERE
let
- [math]\vec R[/math] point to the center of mass of the object
- [math]\vec {r}_k[/math] points to a mass element [math]m_k[/math]
- [math]\vec{r}_k^{\;\;\prime}[/math] points from the center of mass to the mass element [math]m_k[/math]
the angular momentum of mass element [math]m_k[/math] about the point O is given as
- [math]\ell_k = \vec {r}_k \times \vec {p}_k = \vec {r}_k \times m \vec {\dot r}_k[/math]
The total angular momentum about the point O is given as
- [math] \vec L = \sum \ell_k = \sum \vec {r}_k \times m_k \vec {\dot r}_k[/math]
This can be cast in term of the angular momentum about the center of mass and the angular momentum of the motion
- [math]\vec {r}_k = \vec R + \vec{r}_k^{\;\; \prime}[/math]
- [math] \vec L = \sum \vec {r}_k \times m_k \vec {\dot r}_k[/math]
- [math] = \sum (\vec R + \vec{r}_k^{\;\; \prime}) \times m_k (\vec \dot R + \vec{\dot r}_k^{\;\; \prime})[/math]
- [math] = \sum \vec R \times m_k \vec \dot R + \sum \vec R \times m_k \vec{\dot r}_k^{\;\; \prime} + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R +\sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} [/math]
- [math]\sum \vec R \times m_k \vec \dot R = \vec R \times \sum m_k \vec \dot R = \vec R \times M \vec \dot R = \vec R \times \vec P[/math]
- [math]\vec P =[/math] momentum of the center of Mass
- [math]\sum \vec R \times m_k \vec{\dot r}_k^{\;\; \prime} = \vec R \times \sum m_k \vec{\dot r}_k^{\;\; \prime} 0[/math]
- [math]\sum m_k \vec{\dot r}_k^{\;\; \prime} = \sum m_k \left ( \vec {r}_k - \vec R\right ) = \sum m_k \vec {r}_k - \sum m_k \vec R = \vec {v}_{cm} - \vec{v}_{cm} = 0[/math]
- The location of the center of mass is at [math]\vec{ r}_k^{\;\; \prime} = 0[/math] the derivative is also zero
- [math]\sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R = \sum m_k \vec{r}_k^{\;\; \prime} \times \vec \dot R =0 [/math] : The location of the CM is at 0
- [math] \vec L = \vec R \times \vec P + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} [/math]
- [math] = L_{\mbox{CM}} + L_{\mbox{about CM}} [/math]
The total angular momentum is the sum of the angular momentum of the center of mass of a rigid body [math] L_{\mbox{CM}} [/math] and the angular momentum of the rigid body about the center of mass [math] L_{\mbox{about CM}} [/math]
Planet example
What is the total angular momentum of the earth orbiting the sun?
There are two components
- [math] \vec L_{\mbox{CM}} [/math] = angular momentum of the earth orbiting about the sun
- [math] \vec L_{\mbox{about CM}} [/math] = angular momentum of the earth orbiting about the earth's center of mass (Spin)
- [math]\vec L_{\mbox{tot}} = \vec L_{\mbox{CM}} + \vec L_{\mbox{about CM}}[/math]
- [math] \vec L_{\mbox{CM}} [/math] is conserved and defined as Orbital angular momentum
- [math]\vec \dot L_{\mbox{CM}} = \vec \dot R \times \vec P + \vec R \times \vec \dot P[/math]
- [math]\vec \dot R \times \vec P = \vec V \times M \vec V = 0[/math]
- [math]\Rightarrow \vec \dot L_{\mbox{orb}} = \vec R \times \vec \dot P=\vec R \times \vec {F}_{ext}[/math]
If there is only a central force
- [math]\vec {F}_{ext} = G \frac{Mm}{R^3} \vec R[/math]
Then
- [math]\vec R \times \vec {F}_{ext} = \vec R \times G \frac{Mm}{R^3} \vec R= G \frac{Mm}{R^3} \vec R \times \vec R =0
[/math]
Thus
- [math]\vec \dot L_{\mbox{CM}} = \vec R \times \vec {F}_{ext} = 0[/math]
- [math]\vec L_{\mbox{CM}} \equiv \vec L_{\mbox{Orb}}[/math] = constant = Orbital angular momentum
The above is a good approximation even though the Sun's gravitational Field is not perfectly uniform
- How about [math]\vec L_{\mbox{about CM}}[/math]?
Since
- [math]\vec L_{\mbox{tot}} = \sum \vec {r}_k \times m_k \vec {\dot r}_k =\vec L_{\mbox{Orv}} + \vec L_{\mbox{about CM}}[/math]
- [math]\dot \vec L_{\mbox{tot}} =\sum \vec {\dot r}_k \times m_k \vec {\dot r}_k+\sum \vec {r}_k \times m_k \vec {\ddot r}_k[/math]
- [math]= \sum \vec {r}_k \times m_k \vec {\ddot r}_k[/math] :first cross product between same velocity vector is zero
- [math]= \sum \vec {r}_k \times m_k \vec {\F(ext)}_{k}[/math] :first cross product between same velocity vector is zero
- [math]\vec L_{\mbox{about CM}} =\vec L_{\mbox{Orv}} - \vec L_{\mbox{tot}} [/math]
- [math]\dot \vec L_{\mbox{about CM}} =\vec L_{\mbox{Orv}} - \vec L_{\mbox{tot}} [/math]
- [math]\vec L_{\mbox{tot}} = \vec L_{\mbox{tot}} =\vec L_{\mbox{CM}} + \vec L_{\mbox{about CM}}[/math]
- [math]=\vec L_{\mbox{orb}} + \vec L_{\mbox{spin}}[/math]
Forest_Ugrad_ClassicalMechanics#Rigid_Body_Motion