Neutron Polarimeter

From New IAC Wiki
Jump to navigation Jump to search

Go Back


Four-vector Algebra

Consider the two bode reaction [math]D(\gamma, n)p[/math]:

Collision01.png


Write down all four-vectors:

[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) [/math] 
[math] p_D     = \left( m_D,\ 0,\ 0,\ 0  \right) [/math] 
[math] p_{n} = \left( E_n,\ \ p_n\cos \Theta_n,\ \ p_n\sin \Theta_n,\ \ 0  \right) [/math] 
[math] p_{p} = \left( E_p,\ \ p_p\cos \Theta_p,\ \ p_p\sin \Theta_p,\ \ 0  \right) [/math] 

Now apply the conservation of four-momentum:

[math] p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n\ \ \Rightarrow \ \  p^{\mu}_p = p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n[/math]

Squaring both side of equation above and using the four-momentum invariants [math](p^{\mu})^2 = m^2[/math] we have:

[math] m_p^2 = m_D^2 + m_n^2 +  2T_{\gamma}\cdot m_D  - 2m_D\cdot E_n - 2\left( T_{\gamma}E_n - T_{\gamma}p_n\cos\Theta_n\right) [/math]

Detector located at [math]\Theta = 90^o[/math] case

Detector is located at [math]\Theta_n = 90^o[/math], and the formula above is simplified:

[math] m_p^2 = m_D^2 + m_n^2 +  2\ T_{\gamma}\cdot m_D  - 2\ m_D\cdot E_n - 2\ T_{\gamma}E_n [/math]


We can easily solve the equation above with respect to incident photon energy:

[math]T_{\gamma} = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D E_n}{2\ (m_D - E_n)}
                  = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D (T_n+m_n)}{2\ (m_D - (T_n+m_n))} [/math]


For non-relativistic neutrons [math]T_n \ll m_n = 939.5\ MeV[/math] and the formula above is become:

[math]T_{\gamma} = \frac {m_p^2 - m_n^2 - m_D^2 + 2\ m_D m_n + 2\ m_D T_n}{2\ (m_D - m_n)} [/math]


Substituting the corresponding masses, we get finally:

[math]T_{\gamma}\ [MeV] = 2.003\ T_n\ [MeV] + 1.577\ [MeV]\ \ \ \ [1][/math]

and visa versa:

[math]T_n\ [MeV] = 0.499\ T_{\gamma}\ [MeV] - 0.787\ [MeV]\ \ \ \ [2][/math]


Here I derived the formula [2] just inversing the formula [1]. I can as well start from exact solution above, solve this equation with respect to neutron energy, do the non-relativistic approximation and get exactly the same formula [2]. But anyway we ended up with two useful non-relativistic formulas we can analyze now:


1) from formula [1] above we can predict the threshold of [math]^2D(n,\gamma)[/math] reaction:

[math]E_{\gamma} = 1.577\ MeV[/math]

2) from formula [1] above we can predict the incident photon energy based on the detected neutron energy (neutron polarimeter).

3) from formula [2] above we can predict the detected neutron energy based on the incident photon energy.

 -  for the incident photons up to [math]25\ MeV[/math] we can detect neutrons up to  [math]11.69\ MeV[/math]
 -  for the incident photons up to [math]44\ MeV[/math] we can detect neutrons up to  [math]21.17\ MeV[/math]


Example of error calculation (need to be updated to the formulas [1] and [2] above)

example 1

Say, we have, 10 MeV neutron with uncertainty 1 MeV, the corresponding uncertainly for photons energy is:

[math] \delta T_{\gamma} = 2.051\ \delta T_n = 2.051\times 1\ MeV = 2.051\ MeV [/math]

example 2

Say, the neutron's time of flight uncertainly is 1 ns

The neutron's kinetic energy is:

[math]T_n = m_n (\gamma - 1) = m_n\left[ \frac{1}{\sqrt{1-\left(\frac{l}{c\ t}\right)^2}} - 1 \right][/math]

And:

[math]\delta T_n \left(\delta t\right) = -\ \frac{m\ l^2 \delta t}{\left(1-\left(\frac{l}{c\ t}\right)^2\right)^{3/2}c^2 t^3}[/math]


Also we need the neutron's time of flight as function of neutron's kinetic energy:

[math]t:=\frac{l}{c\ \beta_n} = \frac{l}{c\ (p_n/E_n)} =
         \frac{l\ (T_n + m_n)}{c\sqrt{T_n^2+2m_nT_n}}[/math]


Say, we have 10 MeV neutron, 1 m away detector, and neutron's time of flight uncertainty is 1 ns. Then the neutron time of flight is:


[math]t(T_n = 10\ MeV) = 23\ ns[/math]   


Neutron kinetic energy errors are:

[math]\delta T_n(\delta t = 1\ ns) = 0.88\ MeV[/math]
[math]\frac{\delta T_n}{T_n} = \frac{0.88\ MeV}{10\ MeV} = 8.8\ %[/math] 


And photon energy errors are:

[math]\delta T_{\gamma} = 2.051\cdot \delta T_n = 2.051\cdot 0.88\ MeV = 1.81\ MeV [/math] 
[math]\frac{\delta T_{\gamma}}{T_{\gamma}} = \frac{1.80\ MeV}{(2.051\cdot 10 + 1.715)\ MeV} = 8.1\ %[/math]


Below are some examples for different detector distance and neutron kinetic energy:

[math]\delta t_n[/math] [math]l[/math] [math]T_n[/math] [math]\beta_n[/math] [math]t_n[/math] [math]\delta T_n[/math] [math]\frac{\delta T_n}{T_n}[/math] [math]\delta T_{\gamma}[/math] [math]\frac{\delta T_{\gamma}}{T_{\gamma}}[/math]
1 ns 1 m 5 MeV 0.103 32 ns 0.31 MeV 6.2 % 0.64 MeV 5.3 %
1 ns 1 m 10 MeV 0.145 23 ns 0.88 MeV 8.8 % 1.81 MeV 8.1 %
1 ns 1 m 20 MeV 0.203 16 ns 2.51 MeV 12.6 % 5.16 MeV 12.1 %
1 ns 1 m 0.5 MeV 0.033 102 ns 0.010 MeV 1.9 %
1 ns 1 m 1 MeV 0.046 72 ns 0.028 MeV 2.8 %
1 ns 1 m 2 MeV 0.065 51 ns 0.078 MeV 3.9 %
1 ns 1 m 4 MeV 0.092 36 ns 0.22 MeV 5.5 %




Go Back