1MeV=1.6⋅10−13J=1.6⋅10−13m2⋅kgs2
c=2.998⋅108ms
MeVC=0.534⋅10−21m⋅kgs
pe=44MeVc=23.5⋅10−21m⋅kgs
B=peqe⋅R
1T=kgC⋅s, qe=1.6⋅10−19C, 1T=10−4G
B(T)=pe(MeVc)⋅0.33⋅10−2R(m)
B(T)=4.67⋅10−2R(m)
1800=κ+900+β
1800=γ+900+β
κ=γ
R=acos(β)=acos(900−κ)=asin(κ)
d=R⋅(1−cos(κ))=a⋅(1−cos(κ))sin(κ)
B(T)=pe(MeVc)⋅0.33⋅10−2⋅sin(κ)a(m) - general expression for B-field.
B(T)=7.83⋅10−2⋅sin(κ)a(m)
If κ=0.470 then sin(κ)=0.0082 and our B-field becomes:
B(T)=1.2⋅10−3a(m)
a≃0.125m for the coils under consideration. Hence, the B-field needed is:
B=0.00964T=96.4G
z′=L+z
z=z′−L
B_z = \frac {μ_0 }{2} \frac {R^2 \cdot I}{(z_n^{'2} + R^{'2})^{\frac{3}{2}}