Progress reports

From New IAC Wiki
Revision as of 19:47, 28 March 2008 by Oborn (talk | contribs) (→‎3/25/08)
Jump to navigation Jump to search

R3 design Progress report


3/11/08

Progress modeling the R3 drift chamber has been held back by both software and hardware problems. This past week we installed ANSYS on a faster computer ( 2 GHz Intel with 3Meg RAM) and were able to render the design in 30 minutes instead of 2 hours. The turnaround for debugging the geometrical design is now faster and ANSY does not currently crash. We plan on doing the same test using a new computer (2 GHz Intel with 8 Meg RAM) once it has been assembled (2 weeks or less).

The image below represent the current Model which has been implemented in ANSYS.

R3 3D AnsysModel 3-7-08.jpg

3/18/08

1.) Movies showing deflections as a function of applying the max load and then releasing it. The max deflection is about 13 mm. The two movies below show the two endplate deflections with no rods for either 1 fixed or 2 fixed mount points.

This movie shows the endplate deflection as the wire load is applied and then released. The top two mounting brackets on the back plate are fixed.


http://www.jlab.org/Hall-B/secure/clas12/RIII/ISU_Design/images/Deflection_NoRods_NoBack_2FixedMounts.avi


The movie below is under similar conditions except the right bracket is allowed to move.

http://www.jlab.org/Hall-B/secure/clas12/RIII/ISU_Design/images/Deflections_NoRods_Noback_1FixedMount.avi


2.) The Max deflections decreases from 13 mm to less than 1 mm if carbon fiber rods are place along the front edge of the endplates. The back plate hinges are both fixed.

http://www.jlab.org/Hall-B/secure/clas12/RIII/ISU_Design/images/Deflection_Rods.avi

3.) The image below shows a max end plate deflection of 0.3 mm when hexcell backing sheet is used and No carbon fiber rods.

Deflection Hexel 2fixedMounts.jpg File:Deflection Hexel 2fixedMounts.pdf


4.) A max deflection of 22 microns is predicted from our current ANSYS model when both carbon fiber rods and a hexcell backing sheet are used. Only the left hinge is constrained completely and the right hinge is constrained in 2 degrees of freedom. No gravity and no differential gas pressure. Effective Youngs modulus is used. The carbon fiber rods and the hexcell backing sheet are the only materials not made from the poly foam composite. Poly foam used on endplates, back plate, and nose plate. No Al frame around endplate.

R3 3D AnsysModel Deflection 3-12-08.png Media:Deflection_3-12-08.pdf

3/25/08

5) A max deflection of 65 microns is observed from our current ANSYS model when both carbon fiber rods and a hexcell backing sheet are used. Only the left hinge is constrained completely and the right hinge is constrained in 2 degrees of freedom. Gravity is applied along the direction from the back plate towards the Nose plate and no differential gas pressure. The material properties is same as analysis 4 By adding the acceleration of gravity the max deflection increased from 22 microns to 65 microns

200 px Deflection with Gravity 3-20-08.png Media:Deflection_with gravity_3-12-08.pdf


Problems meshing 0.001 inch thick mylar sheet front window. I am able to mesh a XXXX thgick sheet. So I adjust Young's Modulus accordingly.




Go back