Scattering Amplitude

From New IAC Wiki
Revision as of 21:12, 29 December 2018 by Vanwdani (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Navigation_


Scattering Amplitude

In the Møller scattering (P1+P2P1+P2) we have identical particles in the initial and final states. This that the amplitude to be symmetric under interchange of particles (P1P2 or P1P2). Due to this symmetry we can determine two 1st level Feynman diagrams to describe this scattering.

Feynman1stLevel.png

The amplitudes of the individual Feynman diagrams add linearly to form the total amplitude

M=M1+M2


Using the Feynman rules, each vertex contribute a factor

ie(pinitial+pfinal)μ

and the propagator gives

igμνq2

where q is the momentum of the photon

qpfinalpinitial

and gμν is the Mandelstam metric which allows the transformation from the contravariant to covariant form needed for tensor multiplication. Examining both Feynman diagrams seperately, we find for their individual amplitudes


iM1=ie(p1+p1)μ(igμνq2)ie(p2+p2)νiM2=ie(p1+p2)μ(igμνq2)ie(p2+p1)ν


iM1=ie(p1+p1)μ(igμν(p2p2)2)ie(p2+p2)νiM2=ie(p1+p2)μ(igμν(p1p2)2)ie(p2+p1)ν


iM1=ie2((p1+p1)μ(p2+p2)μ(p2p2)2)iM2=ie2((p1+p2)μ(p2+p1)μ(p1p2)2)


Without loss of generality, we can extend this to the center of mass frame


iMee=ie2((p1+p1)μ(p2+p2)μ(p2p2)2(p1+p2)μ(p2+p1)μ(p1p2)2)


Mee=e2(P1P2+P1P2+P1P2+P1P2(P2P2)2P1P2+P2P1+P2P2+P1P1(P1P2)2)



Using the fact that P1P2=P1P2P1P1=P2P2P1P2=P2P1


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P212P1P2+P22))


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P222P2P1+P21))


Mee=e2(2P1P2+2P1P2(P2P2)22P1P2+2P1P1(P2P1)2)



Mee=e2((P212P1P2+P22)(P21+2P1P2+P22)t(P212P1P1+P21)(P21+2P1P2+P22)u)


Mee=e2(ust+tsu)



Navigation_