Occupancy for Sector 1

From New IAC Wiki
Revision as of 02:24, 22 May 2018 by Vanwdani (talk | contribs) (→‎Clas12Mon)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


A bash script to run the GEMC simulations is created. tcsh scripts to run root2evio on lds2 is called using sshpass. The lds2 scripts use sshfs The main script on lds3:

BUILD_GEMC_SIMULATION.sh


The 3 scripts on lds2:

first_commands.tcsh

second_commands.tcsh

last_commands.tcsh


LUND File Output

Uniform spacing in Lab frame, not in CM frame.

0.1 degree spacing for θ in the Lab frame

MolThetaLab LUND DC limits.pngMolThetaCM LUND DC limits.png

0.05 degree spacing for θ in the Lab frame

Finding the Cross Section

Total cross section over φ

CrossSectionMathematicaProof.png

Total cross section over DC limits

If we make the assumption that the beam of incoming electrons is a flux over an area for a given time,

[math]N_{incident}=\Phi\ A_{beam}\ t_{run} \rightarrow dN_{incident}=\Phi\ dA_{beam}\ t_{run}\rightarrow\ \frac{dN_{incident}}{ dA_{beam}}=\Phi\ t_{run}[/math]


Using the definition of the differential cross section:

[math]\frac{d\sigma}{d\Omega}\equiv \frac{ \Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)}{\Biggl(\frac{dN_{incident}}{dA}\Biggr)}\rightarrow \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


Substituting using the flux

[math] \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)\rightarrow \frac{d\sigma}{d\Omega}\Phi\ t_{run}=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega}\Phi d\Omega= \frac{d\sigma}{d\Omega}\Phi\ t_{run}\ \sin \theta\ d\theta\ d\phi[/math]


Since the differential cross section is known in the Center of Mass frame of reference, but measurements are taken in the Lab Frame, a transformation must occur.

[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega_{Lab}}\Phi\ t\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}[/math]


[math]\rightarrow dN_{scattered}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi\ t_{run}\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


If we divide both sides by time


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\frac{N_{incident}}{t_{run}} \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]

Performing a Riemann sum for [math]-30^{\circ} \lt \phi \lt 30^{\circ}[/math]


CrossSection60deg.png


The cross section should be equal between both frames since the number of particles is an invariant. The differential cross section must differ between frames since the solid angle does vary.

[math]\sigma_{(CM)}=\sigma{(Lab)}[/math]


[math]\frac{d\sigma}{d\Omega}_{(CM)} d\Omega_{(CM)}=\frac{d\sigma}{d\Omega}_{(Lab)} d\Omega_{(Lab)}[/math]



[math]\frac{d\sigma}{d\Omega}_{(CM)} \sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi=\frac{d\sigma}{d\Omega}_{(Lab)} \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi[/math]


From the expression found earlier:

[math]\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]


[math]\rightarrow \frac{d\sigma}{d\Omega}_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}[/math]


[math]\rightarrow d\sigma_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}\sin \theta_{(Lab)} d\theta_{(Lab)}\ d\phi[/math]


MolThetaCMdsigmaIntegral.pngMolThetaLabdSigmaIntegral.png

AssociatedWeights2.pngDSigmaCMLab.png

Adjust for DC Sector 1 Limits

IntegralDCLimitsdSigmaCM.pngIntegralDCLimitsdSigmaLab.png

GEMC Cross Section

CORRELATED HITS

CORRELATED conditions
GEMC conditions Meaning
Uses LUND θ and φ values
k=0 1st registered hit
dpid[k]=11 Electron
tid[k]=2 Moller electron from LUND file
mpid[k]=0 The mother particle implied from LUND file
sector[k]=1 Hit is in sector 1
ACTUAL conditions
GEMC conditions Meaning
Calculates θ and φ values from AVG positions
k=0 1st registered hit
dpid[k]=11 Electron
tid[k]=2 Moller electron from LUND file
mpid[k]=0 The mother particle implied from LUND file
sector[k]=1 Hit is in sector 1


Bin Spacing of 0.05 degrees for θ in Lab Frame

TheoryPhiThetaBins05spacing.pngTheoryPhiThetaBins05spacingWeighted.png

Bin Spacing of 0.1 degrees for θ in Lab Frame

TheoryPhiThetaBins1spacing.pngTheoryPhiThetaBins1spacingWeightedWSigma.png

CORRELATEDPhiThetaBins1spacing.pngCORRELATEDPhiThetaBins1spacingWeightedWSigma.png

ACTUALPhiThetaBins1spacing.pngACTUALPhiThetaBins1spacingWeightedWSigma.png

Number of Hits on Wires

Not all 1st hits are on layer 1, so we use the correlated theoretical wire number associated with the LUND Theta and Phi values. The theoretical model has events which are detected by physically impossible valued wires. If we limit the lowest wire value to 0.5 and the highest to less than 112.5


Bin Spacing of 0.05 degrees for θ in Lab Frame

Bin Spacing of 0.1 degrees for θ in Lab Frame

TheoryWireHits1spacing.pngTheoryWireHits1spacingWeightedwSigma.png


WireBins1stHITSCORRELATED1spacing.pngWireBins1stHITSCORRELATEDWeightedWSigma1spacing.png

WireBins1stHITSACTUAL1spacing.pngWireBins1stHITSACTUALWeightedWSigma1spacing.png

Sector1HitsMoller1spacing.pngSector1HitsMollerWeightedWSigma1spacing.png

Sector1HitsNoise1spacing.pngSector1HitsNoiseWeightedWSigma1spacing.png

Occupancy

LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut

Run

./BUILD_GEMC_SIMULATION.sh 

DVMacro

Clas12Mon

Create hipo file


Move hipo file to clas12mon folder

mv LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut.hipo ~/clas12mon

Run monitor program

./README

Load hipo file

"Press H for hipo"
"Press play"
"Switch to 


Clas12mon event counting

000

Clas12Count000.png

000Part1.png

.

.

.

.

000Part2.png

001

Clas12Count001.png

01dchipoPart1.png

.

.

.

.

01dchipoPart2.png

000 & 001 combined

Clas12CountCombined000&001.png

000&001Part1.png

.

.

.

.

000&001Part2.png


evio Counts

EvioCountPart1.png

EvioCountPart2.png


FOR DC Limits

DcOccupancyUnweighted.png

Calculating

[math]N_0=\Delta t \cdot R_{events}=\Delta t \cdot \frac{N_{events}}{t_{simulated}}=250\times 10^{-9}\ s \cdot \frac{98181}{9.3\times 10^{-6}\ s}=2639[/math]


[math]Occupancy=\frac{N_{hits}}{N_0}=\frac{N_{hits}}{\Delta t \cdot R_{events}}=\frac{t_{simulated}\cdot N_{hits}}{N_{events}\cdot \Delta t}=[/math]