Limit of Energy in Lab Frame

From New IAC Wiki
Revision as of 16:38, 15 March 2018 by Vanwdani (talk | contribs)
Jump to navigation Jump to search

The t quantity is known as the square of the 4-momentum transfer

t(P1P1)2=(P2P2)2

In the CM Frame

P1=P2


P1=P2


E1=E1=E2=E2


|p1|=|p1|=|p2|=|p2|


t=(P1P1)2=(P2P2)2


t=P21+P212P1P1=P22+P222P2P2


t=2m22E1E1+2p1p1=2m22E2E2+2p2p2


t=2m22E21+2|p21|cosθ1 1=2m22E22+2|p22|cosθ2 2


where θ1 1 and θ2 2is the angle between the before and after momentum in the CM frame


Using the relativistic relation E2=m2+p2 this reduces to


t=2p21+2|p21|cosθ1 1=2p22+2|p22|cosθ2 2


t=2p21(1cosθ1 1)=2p22(1cosθ2 2)


The maximum momentum is transfered at 90 degrees, i.e. cos90=0


t=2p21


This can be rewritten again using the relativistic energy relation E2=m2+p2


t=2(m2E21)=2(m2E22)

In the Lab Frame

t=P21+P212P1P1=P22+P222P2P2



t=2m22E1E1+2p1p1=2m22E2E2+2p2p2


with p2=0

and E2=m

t=2m22mE2=2(m2E2m)

Maximum Moller Energy in Lab Frame

Since t is invariant between frames


t=2(m2E2m)=2(m2E22)


E2=E21m


withE253 MeV for E1=11000 MeV

The Moller electron has a maximum energy possible of:

E2=5500 MeV


\underline{Navigation}