Theoretical analysis of 2n accidentals rates

From New IAC Wiki
Jump to navigation Jump to search

go_back

Introduction

A given photon pulse may cause multiple neutron-producing reactions, ranging from zero to "infinity" reactions. The number of neutron-producing reactions in a pulse is hereafter denoted by [math]N[/math]. Being the number of neutron-producing reactions actually occurring per pulse, [math]N[/math] is assumed to follow the Poissonian distribution as a limiting case of the binomial distribution. Each neutron-producing interaction is said to produce [math]V_{i}[/math] correlated neutrons, where the random variable [math]V_{i}[/math] is the distribution of the number of neutrons produced in a single neutron-producing reaction. Each of the [math]V_i\text{'}s[/math] are independent and identically distributed random variables, so the purpose of the subscript is to distinguish between several distinct neutron-producing interactions which may occur in a single pulse.

The beam has a Bremsstrahlung end point of 10.5 MeV, which energetically allows for only two possible neutron-producing interactions, 1n-knochout and photofission. Thus, [math]V_{i}[/math] is equal to the photofission neutron multiplicity plus a contribution at [math]V_{i}=1[/math] from 1n-knockout events. The analysis that follows does not need to distinguish between 1n-knockout events and photofission events that emit a single neutron. In both cases, a single neutron is emitted and is uncorrelated with all and any other neutrons.

Probability of detecting a given pair of neutrons in a single pulse