s Channel
The s quantity is known as the square of the center of mass energy (invariant mass)
[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2[/math]
[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2[/math]
[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}[/math]
As shown earlier, the square of a 4-momentum is
[math]\mathbf P^{2} \equiv m^2[/math]
[math]s \equiv m^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}[/math]
This gives
[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*[/math]
Similarly, the scalar product of two 4-momentums
[math]s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)[/math]
In the center of mass frame of reference,
[math]E_1^*=E_2^* \quad and \quad \vec p_1^*=-\vec p_2^*[/math]
[math]s \equiv 2m^2+2(E_1^{*2}+\vec p_1^{*2} )[/math]
Using the relativistic energy equation
[math]E^2 \equiv p^2+m^2[/math]
[math]s \equiv 2m^2+2((m^2+p_1^{*2})+p_1^{*2})[/math]
[math]s=4(m_{CM}^2+p_{CM}^2)[/math]