Differential Cross-Section

From New IAC Wiki
Jump to navigation Jump to search
Navigation_

Differential Cross-Section

dσdΩ=164π2spfinalpinitial|M|2


Working in the center of mass frame

pfinal=pinitial


Determining the scattering amplitude in the center of mass frame


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u22s2tu+(u2+s2)t2)


Using the fine structure constant (with c==ϵ0=1)

αe24π


dσdΩ=α22s((t2+s2)u22s2tu+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2p2(1cosθ)=2p2(12cos2θ2+1)=4p2(12cos2θ2)=4p2sin2θ2



u2p2(1+cosθ)=2p2(1+2cos2θ21)=4p2cos2θ2


Simplifying using the relationship

cosθ=1+cosθ2



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ232E44p2sin2θ24p2cos2θ2+16p4cos4θ2+16E416p4sin4θ2)



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ232E44p2(sin2θ2+cos2θ2)+16p4cos4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16E416p4cos4θ232E44p2+16p4cos4θ216p4sin4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16E4sin4θ216p4cos4θ2sin4θ232E44p2+16p4cos4θ216p4sin4θ2+16E4cos4θ216p4sin4θ2cos4θ2)


dσdΩ=α28E2(tan4θ2+16E4sin4θ2p4sin4θ32E44p2+cot4θ2+16E4cos4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ232E44p2+16E4cos4θ2p4sin4θ+16E4sin4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ232E44p2+4E4(cos2θ+3)p4sin4θ)


\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+


E2m2+p2






Navigation_