JLAB Positron Source DOE Award DE-SC0002600

From New IAC Wiki
Jump to navigation Jump to search

Award Info

8/15/09 - 8/14/2012

Funds Obligated: $381,509

Funds Requested: $411,509

Sponsored Project Proposal Number : 8-17

DOE Award Number : DE-SC0002600

Accounts set up on 10/14/09

Banner Index : RACL39 Account Numer : 684-143-40

Fund: X10165, Org code: 640000, Program : 040R0

Final Report

DOE Award #: DE-SC0002600

Project Title: The Development of a Positron Source for JLab at the IAC

Date: 8/1/13

Period covered: 8/15/09-8/14/2013 (Final Report)


Use the URL below to submit the final report

http://www.osti.gov/elink-2413


Accomplishments

The performance of positron source using a quad triplet collection system has been measured using the support from this award. The first year of research accomplished its goal of performing preliminary measurements of positron production and found that efficiency to be [math] 5 \pm 1 \times 10^{-15}[/math] positrons per incident electron. The second year of work focused on designing an achromat beam line along with a tungsten target to optimize the production of positrons with an energy dispersion [math] (\Delta E/E)[/math] less than 30 \%. The third year measured the performance of a linac based, achromatic positron source and observed a chromaticity of 60\% while improving the positron production efficiency measured in year one by more than a factor of two. Based on this work, we believe that the low positron efficiency observed can be greatly improved by placing the production target within a magnetic collection field instead of outside.

Initial Positron production measurement

An initial set of positron production measurements were performed at the Idaho Accelerator Center (IAC) to evaluate the signal to background level and detector performance. Figure ~\ref{fig:Year1BeamLine} depicts the beam line used for these measurements. A 25 MeV linac, pulsed at 300 Hz, was used to accelerate electrons to 10 MeV. The electrons were bunched into 100 ns wide pulses with a peak current of 40 mA and transported to a 2 mm thick tungsten target located between two dipoles. The second dipole was set to transport 3 MeV electrons or positrons to a shielded cell that housed an HpGe and NaI detector.


Chips run-2008 setup.png CHIPS 5-08 8FC.jpg
The beam line used for an initial set of positron production measurements A picture of the HgPe detector entrance and Farraday cup.


Item Description
Tantalum Foil 6 mm thick 20 mm x 20 mm area
Tungsten Foil 2 mm thick 20 mm x 20 mm area
Phosphorus Flag 1 mil aluminum backing
Media:HpGe_Crystal_GEM-60195-Plus-P.pdf 81.3mm Diameter, 55.5mm Length
NaI detector

A positron transported to the shielded cell would impinge onto a 6mm thick Tantalum foil where it would annihilate and produce two photons. An high purity germanium (HpGe) detector and an Sodium Iodide (NaI) detector were place at 90 degree angles with respect to the Tantalum target in order to detect the characteristic 511 keV photon that would emerge back to back when a positron annihilates after thermalizing in the Tantalum. The analog output of both detectors was measured using a multi-channel analyzer, model MPA-3 manufactured by FAST ComTec Communication Technology GmbH, equipped with a 12 bit ADC.

Figure~\ref{fig:IACpositronSpec} shows the photon energy spectrum observed by each detector. A clear peak at a photon distribution was observed using the HpGe detector while the NaI spectrum was less clear. A permanent magnet was inserted to deflect charged particles away from the Tantalum annihilation target. Figure~\ref{fig:IACpositronSpec} shows the reduction in the 511 keV peak observed by the HpGe detector when the magnet is inserted. Although the HpGe detector calibration was off by 15 keV, the magnet indicated that positively charged particles were being produced and transported to the shielded cell. We did not have the diagnostic equipment needed to determine if those particles were from the Tungsten converter target or created somewhere along the beam line. Our next measurement would use retractable targets to determine the origin of the positively charged particles producing the 511 keV photons.

Run60 HpGe-NaI.gif PositronYield SweeperMagnet run60-61.gif
The observed photon energy distributions as measured by the HpGe (top) and NaI (bottom) detectors. There was no coincidence requirement using the two detectors. The HpGe photon energy distribution before and after a sweep magnet is used to deflect charged particles away from the annihilation target.

The design of a linac based positron source

The first year's research experience was used to design a beam line specifically for use as a positron source. The first step was to ncrease the available space for a beam line by moving the High Repetition Rate Linac (HRRL) cavity from the center of the Physic's beam lab room to a corner and add a system of quads and steering magnets improve beam transport. The second step was to measure the emittance of the linac and use use those measurements as the input parameters of a beam line simulation to optimize positron transport. The installation of a positron production target (T1) and an annihilation target (T2) with NaI detectors was done to complete the linac based positron source.

Beamline Optimization

BeamLine Yim 10-14-10.png Positron Source HRRL beamline images 2.jpg
HRRL beamline for positron generation. A picture of the HRRL positron beam line.


As shown in the Fig.~\ref{fig:app-hrrl-line}, the HRRL's accelerator cavity was relocated to provide enough space for a beam line that would allow the magnet elements needed to construct an achromat. The beam elements are described in Table~\ref{tab:app-hrrl-coordinates}. Quadrupole (Q1-Q9) and dipole magnets (D1 \& D2) were added to the new beam line as well as an optical transmission radiator (OTR), labeled S1, to measure the beam emittance and a YAG screen (S2) to locate the beam after it is deflected by the first dipole. Labels FC1, FC2, and FC3 in Figure~\ref{fig:app-hrrl-line} are Faraday cups installed to measure the electron beam current. Energy slits (EnS) were installed to restrict the beam's energy/momentum spread after the first dipole. A retractable tungsten foil target (T1) was placed between the 1st and 2nd triplets and used to produce positrons from the bremsstrahlung photons produced by electrons within the Tungsten target. A four foot thick wall separates the accelerator side from the experimental cell. A beam pipe at the end of the 90 degree beamline goes through a hole in this wall and delivers the beam from the accelerator side to the experimental cell. The positron detection system consisting of two NaI detectors was placed at the end of the beamline in the experimental cell side as shown in the Fig.~\ref{fig:app-hrrl-line}.


HRRL emittance measurements

The accelerator's emittance was measured using an optical transmission radiator (OTR) and one of the quadrupole magnets close to the accelerators exit port. Figure~\ref{fig:emittanceSetup} illsutrates the components used for the emittance measurement. The visible radiation produced by the electrons traversing the OTR screen was captured with a JAI digital camera that was calibrated by illuminating the 31.75~mm diameter OTR frame with a light emitting diode. The horizontal and vertical calibration factors of 0.04327~\pm~0.00016~mm/pixel and 0.04204~\pm~0.00018~mm/pixel, respectively, were determined using image processing software was to inscribe a circle around the OTR inner frame in units of pixels. The digital images intensity measured by the JAI camera was recorded in a 2-D matrix format and projections on both axes were taken to perform a Gaussian fit. The observed image profiles were not well described by a single Gaussian distribution. The profiles may be described using a Lorentzian distribution, however, the rms of the Lorentzian function is not defined. The super Gaussian distribution seems to be the best option~[11], because rms values may be directly extracted. Figure~\ref{fig:emittanceSetup} shows the square of the rms (\sigma^2_{s}) vs k_1L for x (horizontal) and y (vertical) beam projections along with the parabolic fits using Eq.~\ref{par_fit}. The emittances and Twiss parameters from these fits are summarized in Table~\ref{results}. A simulation used these input parameters to optimize positron transport and to quantify the expected beam loss.


Hrrl 2011 mar emit test quad scan quad.png
Fig. Square of rms values and parabolic fittings. .
Fig. Square of rms values and parabolic fittings. .
Parameter Unit Value
projected emittance [math]\epsilon_x[/math] [math]\mu[/math]m 0.37 [math]\pm[/math] 0.02
projected emittance [math]\epsilon_y[/math] [math]\mu[/math]m 0.30 [math]\pm[/math] 0.04
[math]\beta_x[/math]-function m 1.40 [math]\pm[/math] 0.06
[math]\beta_y[/math]-function m 1.17 [math]\pm[/math] 0.13
[math]\alpha_x[/math]-function rad 0.97 [math]\pm[/math] 0.06
[math]\alpha_y[/math]-function rad 0.24 [math]\pm[/math] 0.07
micro-pulse charge pC 11
micro-pulse length ps 35
energy of the beam E MeV 15 [math]\pm[/math] 1.6
relative energy spread [math]\Delta E/E[/math] % 10.4
HRRL energy spread

A measurement of the electron energy distribution transported to the first dipole (D1) was performed after installing the new beam line. A Faraday cup was placed at the end of the 45 degree beamline to measure the electron beam current that is transported by the first dipole. The dipole magnetic field was mapped in order to determine the transported electron energy as a function of the dipole current. The Faraday cup current was recorded for each 1 A increment of the dipole current. The results in terms of the expected beam energy for each dipole current setting, as predicted by the measured magnetic field map, are shown in Figure~\ref{fig:HRRLenergyScan}. Table~\ref{table:HRRLescanFit} list the parameters of a skewed double Gaussian distributions fit.


Hrrl 17May2012 12MeV En Spread2.png

The beam energy spread does not follow Gaussian distribution, but the overlapping of two skewed Gaussian found to be the best description of beam energy profile Media:Beam_Distributions_Beyond_RMS.pdf.


parameter Notation First Gaussian Second Gaussian
amplitude A 2.13894 10.88318
mean [math]\mu[/math] 12.07181 12.32332
sigma left [math]\sigma_L[/math] 4.46986 0.69709
sigma right [math]\sigma_R[/math] 1.20046 0.45170

Positron converter target

HRRL Beam Rot Tar Sys Mot16.png
A picture of the rotating target motor with cooling lines.

Positron Production Performance

SAINT-GOBAIN 3M33.png IAC NaI Detectors and Parts 7.png Hrrl pos det calb det3 r2637 r2636.png
A drawing fo the NaI detectors used to measure 511 keV photons from the annihlation of positrons by T2. A picture of detectors along with modified bases. A calibrated energy distribution using a Co-60 and Na-22 button source.


Sadiq Thesis Figs 2p7.png

run in: 3735 Sadiq Thesis Figs 4p1 1.png Sadiq Thesis Figs 4p1 2.png
Singles spectra for each detector with and without the annihilation target inserted

This a normalized spectrum (no background subtraction).

run in: 3735 Sadiq Thesis Figs 4p1 3.png Sadiq Thesis Figs 4p1 4.png
Coincidence spectra.


positron rate: [math] e^+_{rate} = 0.259 \pm 0.016 ~ Hz[/math].


Sadiq Thesis Figs 5p1.png

Things not accomplished

No Positron workshop but rather a PePPO collaboration meeting

Used OTR to measure emmittance.

Positron current was too low for a FC measurement