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Abstract

The beam is often represented only by its position (mean) and the width (rms = root
mean squared) of its distribution. To achieve these beam parameters in a noisy
condition with high backgrounds, a Gaussian distribution with offset (4
parameters) is fitted to the measured beam distribution. This gives a very robust
answer and is not very sensitive to background subtraction techniques. To get
higher moments of the distribution, like skew or kurtosis, a fitting function with
one or two more parameters is desired which would model the higher moments. h
this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian
function that will give something like the skew and the kurtosis of the distribution.
— This information is used to quantify special beam distribution. Some are
unwanted like beam tails (skew) from transverse wakefields, higher order
dispersive aberrations or potential well distortion in a damping ring. A negative
kurtosis of a beam distribution describes a more rectangular, compact shape like
with an over-compressed beam in z or a closed to double-horned energy
distribution, while a positive kurtosis looks more like a “Christmas tree” and can
quantify a beam mismatch after filamentation. Besides the advantages of the
quantification, there are some distributions which need a further investigation like
long flat tis which create background particles in a detector. h particle simulations
on the other hand a simple rms number might grossly overestimate the effective size
(e.g. for producing luminosity) due to a few particles which are far away from the
core. This can reduce the practical gain of a big theoretical improvement in the beam
size.

1. INTRODUCTION

Beam distributions are measured by different techniques. Transverse distributions
are generated simply by screens or projections directly by wire scanners. In the
longitudinal phase space, the z-distribution is measured by Streak cameras and the
energy distribution is measured by the distribution at a dispersive region. These
one-dimensional distributions (or the one-dimensional projections) have a Gaussian
shape, if the mechanism for generating the shape is purely statistical. An example is
the transverse distribution after the radiative damping in a damping ring. Different
effects can disturb this shape and can therefore be an indication for the origin of the
disturbance. Transverse wakefields kick the tail of the bunch and create an
asymmetric distribution. Quantifying this effect with an Asymmetric Gaussian fit
function has help to improve the SLC performance. The next chapter discusses this
function, the relation to the skew and the causes of different other asymmetric
distributions.
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Then the next higher moment is studied, which can be fitted by a Super
Gaussim fit function and gives a value for the kurtosis. These higher rnomen~ give
hints of how much a size can be reduced by which effect. A simple increase in the
Gaussian beam size (or emittance) from one point to another is more difficult to
attack.

At tie end there are some examples given how an rms number generated by
a simulation can lead to wrong estimates and answers. The right effect can be more
easfly implemented, but might need more CPU time.

2. ASYMMETRIC GAUSSIAN

An asymmetric Gaussian fit function was developed to get a qumtitative answer for
the asymmetry of a beam spot espwiafly induced by transverse wakefield. Different
approaches are discussed elsewhere [1,2], which include a more detailed
understanding of the wakefields. A simple additional parameter to a Gaussian fit
function can give most of the desired information.

2.1 Fit Function

A Gaussian function is represented by 4 parameters which cover an offset, the peak
height, the centering, and the size:
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be estimated:

This is iike fitting a left and right hdf of a Gaussian to the distribution with

The precise values for the rms and the skew of this distribution can be calculated
and are:
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giving a small correctiofi to Just o and E.



E gives roughly the amount of improvement possible, the exact value for

Figure 1 shows a distribution of a beam profile with a Gaussian and an
asymmetic Gaussian distribution.
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Fig. 1: Asymmetric Gaussian Fit Function

A Gaussian fit to an asymmetric distribution would only indic~te the asymmetry,

while the asymmetric fit gives an estimate of the beam blow up due to the
skewness, (E = –0.35 in this case).

2.2 Reasons for Beam Asymmetry

Besides wakefields, higher order dispersion T166 and potential well distortion can
lead to asymmetries in the bunch shape.

2.2.1 Wakefields

A beam offset in a cavity will generate transverse wakefields, which will kick the
tail of the bunch. -A betatron oscillation will drive the tail further and further out.
Fig. 2 shows a simulation for two betatron oscillations and the resulting distribution

for 3.1010 particles with an asymmevic fit. The asymmetry parameter of T = 18%
indicates most of the possible improvement of 2490.

2.2.2 Higher Order Dispersion

Besides the normal linear dispersion q there can be higher order terms like the
quadratic T166 term which will generate beam tail.

2.2.3 Potential Well Distortion

The longitudinal beam shape in the SLC damping ring is strongly influenced
longitudinal wakefields which distort the focusing potential well, giving
asymmetric distributi~n which was calculated [3] and measured with an
parameter of 0.5.
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Wakefield Induced Beam Tails
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Fig. 2: Simulation of a Betatron OsciHation with Wakefields

A betatron oscillation (left) creates a wakefield tail which blows up the beam size
sigma_x. me asymmet~ (tail) is well parametrized by an asymmetn.c Gaussian
(right) and gives quantitative values for the possible improvement.

3. SUPER GAUSSIAN DISTRIBUTION

Super Gaussian distributions are used in laser physics to describe higher order
beam modes and therefore more rectangular distributions. The steepness of the
rectangular shape gives hints for a possible reduction in size and can be quantified

- by m additional parameter in the exponent. First the mathematical function, then
some beam distributions like a longitudinal bunch distribution with over-
compression, energy distributions, and special transverse distribution from
mismatched beam after fdementation are discussed.

3.1 Super Gaussian Function

A distribution’ which has a symmetric higher moment can be approximated with a
Super Gaussian function where the exponent of the Gaussian is a variable N and
will give a Gaussian for N = 2. For big N the function will describe a more
rectangular distribution, while for small N it fits to a distribution with long tails on
both sides
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The difference between o- and- COhelps to keep o close to the right number of a
normal Gaussian fit.



3.2 Reasons for Big Beam Kurtosis

The beam can get a rectangular-lke shape by folding it on top of i~elf in the other
dimension of the phase space. By smearing it out l~e filamentation, the beam
distribution gets wide symmetric ttis.

3.2.1Rectangular Distribution

For N bigger than 2 the value N/2 gives a factor of how much smaller the beam
spot would be if it were a simple Gaussian with the rise and fdl slopes of the more
rectangular distribution. Fig. 3 shows an example of an over-compressed beam [4]
indicating the 2.5 times smaller possible bunch length. (The bunch is purposely
formed in that way to compensate longitudinal w&efields giving a small energy
spread at the end of the SLC linac.) A double-homed energy distribution and a
filarnented beam offset are other examples giving an S-shape or respectively donut
in phase space.
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Fig. 3: Simulated Longitudind Bunch Shape and Fit

The non-linearity of the rf in a compression scheme can be used to form the bunch
in such a way that it will give a small energy spread at the end ~e fit can quantifi
this distribution in an analytical way to use it for other studies and comparison with
experiments.

3.1.2 Christmas Tree Distribution

E the form parameter N is less than 2 it will describe distributions with a smaU pek
and wide tails (lke a Christmas tree). Such distributions were observed earlier with
no direct tool to quantify and fix. In simulations such a distribution is easily
achieved by a betatron mismatch and filamentation (smearing out the elliptic
concentrically in phase space). The distributions and fits for different mismatches
are shown in Fig. 4. A measured distribution can now be quantified and compared
with simulations to giv; a prediction for the size of the mismatch.
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Fig. 4: Filamented Beam Shape after a Betatron Mismatch

A peaked distribution with wide tails give a hint for a mismatch which is already
$Iamented. By fitting a Super Gaussian finction to that shape the amount of the
mismatch can be measured (Bmag more than 5, lefi). An offset will filament to a
domit shape in phase space which will give a more rectangular shape.
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4. RMS IN SIMULATIONS

To get a quick result of a beam size in simulations the rms (root mean square) is
used. This number might have not much in common with the effective size of the
distribution which will be show in an example and some simulation resul~.

4.1 RMS Example

Let’s assume a Gaussian beam distribution in y. The luminosity is proportional to
l/size. Now we take 2% of that distribution and put it to a big halo around the
beam, so that the rms number goes up by a factor of two indicating half the
luminosity. On the other hand the real luminosity is only reduced by 4% since 270

of each bunch are more or less not contributing to the luminosity.

4.2 Simulation of Effective Size

The effective size of a distribution depends on the subject you are studying. If the
concern is background in the detector more interest is spend on the behavior of nil
and hdo particles, while the core is relevant for luminosity. The ti&hteffective size
for luminosity can be calculated by convoluting the distribution of the two colliding
beams, which is essentitiy a ~imulation of the collision.
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Figure 5 shows the effect of a large higher order chromatic term ( UM66 ) [5] in the

final focus optics for different angular divergences. The simple rms value would
predict a large degradation in spot size, while the effective size enlargement is much
more moderate and closer to thi linear optics results.
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Fig. 5: RMS and Effective Sizm of a Beam Distribution

At the interaction point the beam distribution gets influenced by higher order
chromtic term giving wide tails and therefore a bigger rw value for higher
angular divergences. The effective beam size is still going down since it depends on
the core where the peak height is still rising.

CONCLUSION

Higher moments in a distribution can be fitted with special functions, Asymmetric
Gaussian for the 3rd and Super Gaussian for the 4th moment. They give the
advantage of a special form that is robust against varying pedestrian offsets below
the measured distribution. Different beam conditions are discussed, which are quite
remarkably fitted by these functions which quantify the measured effect. A simple
rms value in simulations can lead to wrong conclusions if wide tails are present.
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