Differential Cross-Section

From New IAC Wiki
Jump to navigation Jump to search
Navigation_

Differential Cross-Section

dσdΩ=164π2spfinalpinitial|M|2


Working in the center of mass frame

pfinal=pinitial


Determining the scattering amplitude in the center of mass frame


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u2+2s2tu+22ust22st2tsu22su+(u2+s2)t2)


Using the fine structure constant (with c==ϵ0=1)

αe24π


dσdΩ=α22s((t2+s2)u2+2s2tu+22ust22st2tsu22su+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2p2(1cosθ)=2p2(12cos2θ2+1)=4p2(12cos2θ2)=4p2sin2θ2



u2p2(1+cosθ)=2p2(1+2cos2θ21)=4p2cos2θ2


Simplifying using the relationship

cosθ=1+cosθ2



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ2+32E44p2sin2θ24p2cos2θ2+2+4E2(1cosθ)2p2(1+cosθ)2(1cosθ)+4E2(1+cosθ)2p2(1cosθ)2(1+cosθ)+4E2(1+cosθ)p2(1cosθ)(1+cosθ)+4E2(1cosθ)p2(1+cosθ)(1cosθ)+16p4cos4θ2+16E416p4sin4θ2)



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ2+8E4p4sin2θ+2+4E2cot2θ2p2sin2θ+4E2tan2θ2p2sin2θ+4E2(1+cosθ)p2sin2θ+4E2(1cosθ)p2sin4θ+16p4cos4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16p4cos4θ216p4sin4θ2+8E4sin2θp4sin4θ+2+8E2p2sin2θ+4E2(3cos2θ+5)p2sin4θ+16E416p4cos4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16E4sin4θ216p4cos4θ2sin4θ2+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ+5)p4sin4θ+16p4cos4θ216p4sin4θ2+16E4cos4θ216p4sin4θ2cos4θ2)


dσdΩ=α28E2(tan4θ2+16E4sin4θ2p4sin4θ+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+cot4θ2+16E4cos4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ2+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+16E4cos4θ2p4sin4θ+16E4sin4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ2+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θ+3)p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ2+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4cos2θp4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ2+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ+1)4+sin4θ(cosθ1)4+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ1)4(cosθ+1)4(cosθ1)4+sin4θ(cosθ+1)4(cosθ1)4(cosθ+1)4+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ1)4sin8θ+sin4θ(cosθ+1)4sin8θ+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2((cosθ1)4sin4θ+(cosθ+1)4sin4θ+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2((2cos4θ+12cos2θ+2)sin4θ+8E4sin2θp4sin4θ+2p4sin4θp4sin4θ+8E2p2sin2θp4sin4θ+4E2p2(3cos2θ3sin2θ+5)p4sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α24E2sin4θ((cos4θ+6cos2θ+1)1+4E4sin2θp4+p4sin4θp4+4E2p2sin2θp4+2E2p2(3cos2θ3sin2θ+5)p4+2E4(cos2θsin2θ)p4+6E4p4)


dσdΩ=α24E2sin4θ(p4(cos4θ+6cos2θ+1)p4+4E4sin2θp4+p4sin4θp4+4E2p2sin2θp4+2E2p2(3cos2θ3sin2θ+5)p4+2E4(cos2θsin2θ)p4+6E4p4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)+4E4sin2θ+p4sin4θ+4E2p2sin2θ+2E2p2(3cos2θ3sin2θ+5)+2E4(cos2θsin2θ)+6E4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)+4E4sin2θ+p4sin4θ+4E2p2sin2θ+6E2p2(12sin2θ)+10E2p2+2E4(12sin2θ)+6E4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)+8E4+p4(12cos2θ+cos4θ)+4E2p2sin2θ+6E2p212E2p2sin2θ+10E2p2)


dσdΩ=α24E2p4sin4θ(p4(2cos4θ+4cos2θ+2)+8E4sin2θ+8E48E2p2sin2θ+16E2p2)


dσdΩ=α24E2p4sin4θ(p4(2cos4θ+4cos2θ+2)+8E4(1cos2θ)+8E48E2p2(1cos2θ)+16E2p2)


dσdΩ=α24E2p4sin4θ(p4(2cos4θ+4cos2θ+2)+8E4(2cos2θ)+8E2p2(1+cos2θ))


E2m2+p2






Navigation_