Se170063 Nickel Foil Wide Gauss Window Expansion
Jump to navigation
Jump to search
This analysis was done by weighting the histogram by the mass of the sample. The window is [1356,1368] and was expanded by one channel on each side to find the error in the counts.
5/25/17 | 5/26/17 | 5/27/17 | 5/29/17 | 5/30/17 | 5/31/17 | 6/1/17 | |
Original Window Counts | 98320 | 173200 | 228300 | 85940 | 148900 | 109100 | 64250 |
Original Window Background (Integrated) | 3954.6 | 8499.51 | 19328.4 | 2969.18 | 8652.05 | 5097.77 | 2584.57 |
Original Window Difference | 94365.4 | 164700.49 | 208971.6 | 82970.82 | 140247.95 | 104002.23 | 61665.43 |
Expanded Window Counts | 98870 | 174300 | 230500 | 86340 | 149900 | 109700 | 64540 |
Expanded Window Background | 4058.92 | 8644.64 | 19114.1 | 3150.02 | 8755.1 | 5390.22 | 2565.2 |
Expanded Window Difference | 84811.48 | 165655.36 | 211385.9 | 83189.98 | 141144.9 | 104309.78 | 61974.8 |
Error in counts | 446.08 | 954.87 | 2414.3 | 219.16 | 896.95 | 307.55 | 309.37 |
Position | 50 cm | 30 cm | 20cm | 20 cm | 10cm | 10cm | 10cm |
Efficiency | 0.00017 | 0.000422 | 0.000847 | 0.000847 | 0.0031 | 0.0031 | 0.0031 |
.dat file entry | 14.42641264 +/- 0.0047271564 | 14.07896028 +/- 0.0057976148 | 13.5315612 +/- 0.0115532446 | 12.69531211 +/- 0.0026414106 | 12.01862017 +/- 0.0063922503 | 11.62243763 +/- 0.0029571481 | 11.07892229 +/- 0.0050169114 |
Below is a plot of the activity as a function of time
This gives the constant of 14.5046 +/- 0.00345043. Now find the initial activity
<math> A_0 = A_{t}*e^{\lambda*}