\underline{Navigation}
⊲
△
⊳
Function for the change in x' in the detector frame for change in ϕ and constant θ in the lab frame
D2P=√(xD2−xP)2+(yD2−yP)2+(zD2−zP)2
D1P=√(xP−xD1)2+(yP−yD1)2+(zP−zD1)2
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)
|
xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)
|
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae
x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
Expressing this as functions of ϕ and non-differentiable constants
x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4
Differentiating with respect to ϕ
xD1=rD1cos(ϕ)⇒˙xD1=−rD1sin(ϕ)
|
yD1=rD1sin(ϕ)⇒˙yD1=rD1cos(ϕ)
|
xD2=rD2cos(ϕ)⇒˙xD2=−rD2sin(ϕ)
|
yD2=rD2sin(ϕ)⇒˙yD2=rD2cos(ϕ)
|
xP=2.52934271645cos(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙xP=−2.52934271645cot(θ)sin(ϕ)(cos(ϕ)cot(65∘+cot(θ))2
|
yP=2.52934271645sin(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙yP=−1.7206+2.52934271645cos(ϕ)cot(θ)(cos(ϕ)cot(65∘)+cot(θ))2
|
zP=2.52934271645cot(θ)cot(θ)+cos(ϕ)cot(65∘)⇒˙zP=−1.7206cot(θ)sin(ϕ))(cos(ϕ)cot(65)+cot(θ))2
|
dx11dϕ=−24c4ddϕ(xP(ϕ)xD2(ϕ))+24c4ddϕ(xP(ϕ)xD1(ϕ))−24c4ddϕ(yP(ϕ)yD2(ϕ))+24c4ddϕ(yP(ϕ)yD1(ϕ))−2c34c4ddϕzP(ϕ)
dx11dϕ=−24c4((˙xP(ϕ)xD2(ϕ)+xP(ϕ)˙xD2(ϕ))−(˙xP(ϕ)xD1(ϕ)+xP(ϕ)˙xD1(ϕ))+(˙yP(ϕ)yD2(ϕ)+yP(ϕ)˙yD2(ϕ))−(˙yP(ϕ)yD1(ϕ)+yP(ϕ)˙yD1(ϕ))+c3˙zP(ϕ))
\underline{Navigation}
⊲
△
⊳