Difference between revisions of "Neutron Polarimeter"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math> | 2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math> | ||
− | <math> m_p^2 - m_{\gamma}^2(=0) - m_D^2 - m_n^2 = </math> | + | <math> m_p^2 - m_{\gamma}^2(=0) - m_D^2 - m_n^2 = </math><br> |
+ | <math> = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n </math> <br> | ||
+ | <math> = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n </math> | ||
− | |||
− | + | Finally we have: | |
+ | <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)}<\math> | ||
+ | Because our detector <math><\math> | ||
Revision as of 21:56, 5 June 2010
Relativistic kinematic
energy dependence of outcoming neutron versus energy of incoming photons
writing four-vectors:
Doing four-vector algebra:
Finally we have:
<math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)}<\math>
Because our detector <math><\math>