Difference between revisions of "Quality Checks"

From New IAC Wiki
Jump to navigation Jump to search
Line 261: Line 261:
 
  Why is there a big  gap for<math> \phi < 100</math> ?  
 
  Why is there a big  gap for<math> \phi < 100</math> ?  
  
Take a look at theta -vs- phi plots for each sector.  Do the dead spots impact difference?
+
 
  
 
{|border="2" colspan = "4"
 
{|border="2" colspan = "4"
Line 267: Line 267:
 
||[[Image:phi_angle_difference_cuts_on_electrons_pions_and_nphe_no_cuts_on_sc_paddle_file_dst27095.gif|300px]]
 
||[[Image:phi_angle_difference_cuts_on_electrons_pions_and_nphe_no_cuts_on_sc_paddle_file_dst27095.gif|300px]]
 
||[[Image:phi_angle_difference_cuts_on_electrons_pions_and_nphe_no_cuts_on_sc_paddle_file_dst27095_1.gif|300px]]  
 
||[[Image:phi_angle_difference_cuts_on_electrons_pions_and_nphe_no_cuts_on_sc_paddle_file_dst27095_1.gif|300px]]  
 +
|}<br>
 +
 +
Take a look at theta -vs- phi plots for each sector.  Do the dead spots impact difference?
 +
 +
{|border="2"
 +
|-
 +
! colspan="3" | ?????????????
 +
|-
 +
! SECTOR 1 || SECTOR 2 || SECTOR 3
 +
|-
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_1_file_dst27095.gif|200px]]
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_2_file_dst27095.gif|200px]]
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_3_file_dst27095.gif|200px]]
 +
|-
 +
! SECTOR 4 || SECTOR 5 || SECTOR 6
 +
|-
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_4_file_dst27095.gif|200px]]
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_5_file_dst27095.gif|200px]]
 +
|| [[Image:e_theta_vs_phi_angle_no_cuts_on_sc_paddle_and_on_nphe_sector_6_file_dst27095.gif|200px]]
 
|}<br>
 
|}<br>
  

Revision as of 22:46, 11 March 2008

Quality Checks

Run Summary Table

The table below uses a characteristic DST file to try and estimate the sample size for a semi-inclusive analysis of pion electroproduction. The column marked "cuts" below indicates the number of events kept when the standard EC based electron identification cuts, described above, are used: ECtot>0.2p and
ECinner>0.08p. The next step will be to compare unpolarized pion production rates in order to evaluate the CLAS detectors efficiencies for measuring charged pions with different torus polarities. The question is whether you get the same rates for negatively charged pions in one torus polarity to positively charged pions using the opposite torus polarity.

Beam Energy Torus Current Target Begin Run End Run file used # trig(106) events remaining after e cuts(%) expected # evts(106) events remaining after e and π+ cuts(%) expected # evts(106) events remaining after e and π cuts(%) expected # evts(106)
4239 2250 NH3 28205 28277 /cache/mss/home/nguler/dst/dst28205_05.B00 1108.72 60.8 674.1 8.3 92.02 3.24 35.92
ND3 28074 28190 /cache/mss/home/nguler/dst/dst28187_05.B00 1117.87 59.6 666.25 7.99 89.32 3.3 36.9
-2250 NH3 28407 28479 /cache/mss/home/nguler/dst/dst28409_05.B00 1013.57 24.2 245.28 0.12 1.22 0 0
ND3 28278 28403 /cache/mss/home/nguler/dst/dst28400_05.B00 1556.04 23.9 371.89 0.02 0.31 0.05 0.51
5735 2250 NH3 27074 27195 /cache/mss/home/nguler/dst/dst27095_05.B00 1442.25 57.7 832.18 9.3 134.13 3.8 59.13
ND3 27116 27170 /cache/mss/home/nguler/dst/dst27141_05.B00 624.55 59.1 369.10 9.53 59.52 3.9 24.36
-2250 NH3 26911 27015 /cache/mss/home/nguler/dst/dst26988.B00 900.93 80.7 727.05 7.14 64.33 9.9 89.19
ND3 27022 27068 /cache/mss/home/nguler/dst/dst27055_05.B00 711.53 80 569.22 6.97 49.59 10.1 71.86

Rates

Unpolarized Pion electroproduction

Rates from other experiments in our Kinematic range

Center of Mass Frame Transformation

We have proton and electron. In the Lab frame electron is moving along the x-axis with momentum ;pe and proton is at rest. The 4-vectors are:

Lab Frame
Pe=(Ee,pe,0,0) and for proton :Pp=(mp,0,0,0)
CM Frame
:Pe=(Ee,pe,0,0) and for proton :Pp=(Ep,pp,0,0)
Find βCM such that PCMtot=0=pe+pp
(Eepe00)=[γγβ00γβγ0000100001](Eepe00)


(Eppp00)=[γγβ00γβγ0000100001](mp000)

Using the last two equations we will get the following for x component:

pe=γcm(βcmEepe)
pp=γcmβcmmp
γcm(peβcmEe)=γcmβcmmp
βcm=pemp+Ee
Example of the Missing Mass Calculation for the following reaction ep+(e)πX

Event number 3143292 1.jpg Event number 3143292 2.jpg Event number 3143292 3.jpg

pe=5.736GevEe : electron mass is neglibible
mp=0.938GeV : Mass of a proton
βcm=5.7366.674=0.859<1
γcm=11β2cm=110.8592=1.9532
(Eepexpeypez)=[γcm00γcmβcm01000010γcmβcm00γcm](Ee=4.49150.5490.9744.3501)
(Epppxppyppz)=[γcm00γcmβcm01000010γcmβcm00γcm](Ep=1.45630.36970.34470.9924)
(Eπpπxpπypπz)=[γcm00γcmβcm01000010γcmβcm00γcm](Eπ=0.57570.10520.43940.3282)
Electron
(Eepexpeypez)=(4.4915γcm4.3501γcmβcm0.5490.9744.4915γcmβcm+4.3501γcm)=(1.47420.5490.9740.96078)
Proton
(Epppxppyppz)=(1.4563γcm0.9924γcmβcm0.36970.34471.4563γcmβcm+0.9924γcm)=(1.179390.36970.34470.505023)
π
(Eπpπxpπypπz)=(0.5757γcm0.3282γcmβcm0.10520.43940.5757γcmβcm+0.3282γcm)=(0.57380.10520.43940.324868)

Ptot=(pex+ppx+pπx)ˆx+(pey+ppy+pπy)ˆy+(pez+ppz+pπz)ˆz=0.0741ˆx+0.1899ˆy+0.13ˆz

Missing Mass
Conservation of the 4-momentum gives us following

(Pe)μ+(Pp)μ=(Pe)μ+(PX)μ+(Pπ)μ
(Pe)μ+(Pp)μ=(Pe)μ+(PX)μ+(Pπ)μ

Solving it for the final proton state

Mx2=(PX)μ(PX)μ=[(Pe)μ+(Pp)μ(Pe)μ(Pπ)μ][(Pe)μ+(Pp)μ(Pe)μ(Pπ)μ]

In our case 4-vectors for particles are

(Pe)μ=(5.736,0,0,5.736GeV)
(Pp)μ=(mp,0,0,0)
(Pe)μ=(4.4914861,0.549,0.974,4.3501)
(Pπ)μ=(0.575721,0.1052,0.4394,0.3282)

Plug and chug

Mx2=[(5.736,0,0,5.736GeV)+(mp,0,0,0)(4.4914861,0.549,0.974,4.3501)(0.575721,0.1052,0.4394,0.3282)] [(5.736005.736) + (mp000) - (4.49148610.5490.9744.3501) - (0.5757210.10520.43940.3282)]=0.981198614GeV2

Mx=0.9905547GeV

Example of the Missing Mass Calculation for the following reaction ep(e)nπ+

Used file dst27095_05.B00. Target NH3, Beam Energy 5.735 GeV and Torus Current +2250. Event_number=3106861

Event number 3106861 sector 1 4.jpg Event number 3106861 sector 3 6.jpg Event number 3106861 calorimeter.jpg Event number 3106861 particle momentums sectors phi angle.jpg

pe=5.736GevEe : electron mass is negligible
mp=0.938GeV : Mass of a proton
mn=0.939566GeV : Mass of a neutron
βcm=5.7366.674=0.859<1
γcm=11β2cm=110.8592=1.9559
(Eepexpeypez)=[γcm00γcmβcm01000010γcmβcm00γcm](Ee=2.71650.87690.1172.5684)
(Enpnxpnypnz)=[γcm00γcmβcm01000010γcmβcm00γcm](En=2.02180.48110.90081.4704)
(Eπ+pπ+xpπ+ypπ+z)=[γcm00γcmβcm01000010γcmβcm00γcm](Eπ+=2.34310.69180.82422.0764)


Electron
(Eepexpeypez)=(2.7165γcm2.5684γcmβcm0.87690.1172.7165γcmβcm+2.5684γcm)=(0.995690.87690.1170.45728)
Neutron
(Enpnxpnypnz)=(2.0218γcm1.4704γcmβcm0.48110.90082.0218γcmβcm+1.4704γcm)=(1.48280.48110.90080.52256)
π+
(Eπ+pπ+xpπ+ypπ+z)=(2.3431γcm2.0764γcmβcm0.69180.82422.3431γcmβcm+2.0764γcm)=(1.092570.69180.82420.1226)

Ptot=(pex+pnx+pπ+x)ˆx+(pey+pny+pπ+y)ˆy+(pez+pnz+pπ+z)ˆz=0.296ˆx+0.1936ˆy+0.0573ˆz

Missing Mass Calculation
Below is the conservation of the 4-momentum

(Pe)μ+(Pp)μ=(Pe)μ+(PX)μ+(Pπ+)μ
(Pe)μ+(Pp)μ=(Pe)μ+(PX)μ+(Pπ+)μ

Solving it for the final neutron state

Mx2=(PX)μ(PX)μ=[(Pe)μ+(Pp)μ(Pe)μ(Pπ+)μ][(Pe)μ+(Pp)μ(Pe)μ(Pπ+)μ]

The 4-vectors for the particles in this event

(Pe)μ=(5.736,0,0,5.736GeV)
(Pp)μ=(mp,0,0,0)
(Pe)μ=(2.7164,0.8769,0.117,2.5684)
(Pπ+)μ=(2.3431,0.6918,0.8242,2.0764)

Mx2=[(5.736,0,0,5.736GeV)+(mp,0,0,0)(2.7164,0.8769,0.117,2.5684)(2.3431,0.6918,0.8242,2.0764)] [(5.736005.736) + (mp000) - (2.71640.87690.1172.5684) - (2.34310.69180.82422.0764)]=0.882724889GeV2

Mx=0.9395344GeV

ϕLABdiff=ϕLABeϕLABπ+=(120+35.3)26.4=128.9

ϕπCM transformation from LAB frame to CM frame

Used file dst27095_05, event_number=3106861

File dst27095 event number 3106861 phi gamma theta x and phi pi angles in cm frame.jpg

βcm=5.7366.674=0.859<1
γcm=11β2cm=110.8592=1.9559
Ee=pe2+me2=0.87692+0.1172+2.568422=2.7165
Calculation of ϕγCM
ϕγCM=tan1(pezCMpezCM)
pezCM=γCMβCMpezLAB+γCMpezLAB=
=1.9559×0.8594×5.736+1.9559×5.736=1.5773
pezCM=γCMβCMEe+γCMpezLAB=
=1.9559×0.8594×2.7165+1.9559×2.5684=0.4574
ϕγ=tan1(1.57730.4574)=73.83
Calculation of θxCM


θxCM=cos1(pCMezpezCMpCMex2+pCMey2+(pCMezpezCM)2)=
=cos1(0.45741.57730.87692+(0.117)2+(0.45741.5773)2)=141.69


Calculation of ϕπCM
Eπ=pπ2+mπ2=
=(0.6918)2+0.82422+2.07642+0.139692=2.3428


pπzCM=γCMβCMEπ+γCMpπzLAB=
=1.9559×0.8594×2.3428+1.9559×2.0764=0.1232


ϕCMπ=tan1(pπyCMpπxCM)=


=tan1(sinϕγ×pCMπx+cosϕγ×pCMπysinθx×(cosϕγ×pCMπx+sinϕγ×pCMπy)+cosθx×pCMπz)=


=tan1(sin(73.83)×(0.6918)+cos(73.83)×0.8242sin(141.69)×(cos(73.83)×(0.6918)+sin(73.83)×0.8242)+cos(141.69)×0.1232=72.92
Missing_Mass(experimental data)

W missing mass no cuts 27095 experimental data.gif

The mean value of the missing mass is around 2.056 GeV.

ϕ angle
ϕ angle for electrons and pions (π+) in lab frame ϕLABe, ϕLABπ+

Used file is dst27095_05.B00.Target material is NH3, Torus +2250 and beam energy 5.7 GeV

For Electrons e with cuts (e_p<3, ECtot>0.2p, ECinner>0.08p, nphe>2.5 and sc_paddle=7) For Pions(π+) with cuts for sc_paddle=7
The absolute phi angle for electrons in lab frame with all cuts applied used file dst27095.gif The absolute phi angle for pions in lab frame with all cuts applied used file dst27095.gif


For Electrons with cuts (e_p<3, ECtot>0.2p, ECinner>0.08p, nphe>2.5 and sc_paddle=7)
SECTOR 1 SECTOR 2 SECTOR 3
Electron phi angle lab frame with cuts sc paddle 7 sector 1 file dst27095.gif Electron phi angle lab frame with cuts sc paddle 7 sector 2 file dst27095.gif Electron phi angle lab frame with cuts sc paddle 7 sector 3 file dst27095.gif
SECTOR 4 SECTOR 5 SECTOR 6
Electron phi angle lab frame with cuts sc paddle 7 sector 4 file dst27095.gif Electron phi angle lab frame with cuts sc paddle 7 sector 5 file dst27095.gif Electron phi angle lab frame with cuts sc paddle 7 sector 6 file dst27095.gif


For pions(π+) with cuts for sc_paddle=7
SECTOR 1 SECTOR 2 SECTOR 3
Pions plus phi angle lab frame with cuts sc paddle 7 sector 1 file dst27095.gif Pions plus phi angle lab frame with cuts sc paddle 7 sector 2 file dst27095.gif Pions plus phi angle lab frame with cuts sc paddle 7 sector 3 file dst27095.gif
SECTOR 4 SECTOR 5 SECTOR 6
Pions plus phi angle lab frame with cuts sc paddle 7 sector 4 file dst27095.gif Pions plus phi angle lab frame with cuts sc paddle 7 sector 5 file dst27095.gif Pions plus phi angle lab frame with cuts sc paddle 7 sector 6 file dst27095.gif


The plots below show what happens when you require the nphe from electron to be > 2.5 and you only look for pions in scintillator paddle 7.

Why is there a big  gap for[math] \phi \lt  100[/math] ? 


Phi angle difference cuts on electrons and pions no cuts on sc paddle and on nphe file dst27095.gif Phi angle difference cuts on electrons pions and nphe no cuts on sc paddle file dst27095.gif Phi angle difference cuts on electrons pions and nphe no cuts on sc paddle file dst27095 1.gif


Take a look at theta -vs- phi plots for each sector.  Do the dead spots impact difference?
?????????????
SECTOR 1 SECTOR 2 SECTOR 3
E theta vs phi angle no cuts on sc paddle and on nphe sector 1 file dst27095.gif E theta vs phi angle no cuts on sc paddle and on nphe sector 2 file dst27095.gif E theta vs phi angle no cuts on sc paddle and on nphe sector 3 file dst27095.gif
SECTOR 4 SECTOR 5 SECTOR 6
E theta vs phi angle no cuts on sc paddle and on nphe sector 4 file dst27095.gif E theta vs phi angle no cuts on sc paddle and on nphe sector 5 file dst27095.gif E theta vs phi angle no cuts on sc paddle and on nphe sector 6 file dst27095.gif


Write equation forϕCMπ in terms of Lab frame Momentum and energy.

Graph [math]\phi_{\pi}^{CM}[/math] for Pions hitting paddle #7.  The y-axis should be pion counting rate in units of pions per nanCoulomb.
ϕ angle in the Center of Mass Frame

The variables below are in Lab Frame:

From epnπ+ from CLAS

Kinematics of single π+ electroproduction



From the above picture we can write down the momentum x,y and z components for pion in terms of angle and total momentum.

pπxLAB=pLABπsinθLABπcosϕLABπ

pπyLAB=pLABpisinθLABπsinϕLABπ

ϕLABπ=arctg(pπyLABpπxLAB)

where pπxLAB and pπyLAB are the x and y components of the pion momentum.

(Pe)μ - Initial electron 4-momentum
(PN)μ - Target Nucleon 4-momentum
(Pe)μ - Scattered electron 4-momentum
(Ph)μ - Hadron final state 4-momentum
(Pm)μ - Meson final state 4-momentum

h=n, m=π+ for e(p,e)π+n


In Inclusive e(p,e)X

Then The Missing Mass W=(E2xp2x)


In Exclusive e(p,e)π+X

Then Missing Mass M=(E2hp2h)


Conservation of 4-momentum gives

(Pe)μ+(PN)μ=(Pe)μ+Phμ+(Pm)μ

Phμ=(Pe)μ(Pe)μ+(PN)μ(Pm)μ


qμ - 4-momentum of the exchanged virtual photon(γ)

qμ=(Pe)μPμe=(Ee,pe)(Ee,pe)=


=(EeEe,pepe)=(0,pepe)=(0,pe,xˆx+pe,yˆy+(pe,zpe,z)ˆz)


ϕγ=tan1(pexpez)


θx=cos1(pezpezpex2+pey2+(pezpez)2)

pex=pCMex

pey=pCMey

pCMez=EeγCMβCM+pLABezγCM

pCMez=pLABezγCMβCM+pLABezγCM

pLABez=BeamEnergy

First the coordinate system is rotated around z-axis by ϕγ angle and then around y-axis by θx angle. Below is presented the transformation matrix.

Rotation around phi gamma angle.gifRotation around theta x angle.gif

(pLABπxpLABπypLABπz)=[cosθx0sinθx010sinθx0cosθx][cosϕγsinϕγ0sinϕγcosϕγ0001](pLABπxpLABπypLABπz)=

=(cosθx(cosϕγpLABπx+sinϕγpLABπy)sinθxpLABπzsinϕγpLABπx+cosϕγpLABπysinθx(cosϕγpLABπx+sinϕγpLABπy)+cosθxpLABπz)


ϕLABπ=tan1(pπyLABpπxLAB)=tan1(sinϕγ×pLABπx+cosϕγ×pLABπysinθx×(cosϕγ×pLABπx+sinϕγ×pLABπy)+cosθx×pLABπz)

ϕCMπ=tan1(pπyCMpπxCM)=tan1(sinϕγ×pCMπx+cosϕγ×pCMπysinθx×(cosϕγ×pCMπx+sinϕγ×pCMπy)+cosθx×pCMπz)


pCMπx=pLABπx

pCMπy=pLABπy

pCMπz=EπγCMβCM+pLABπzγCM

= Phi rate =
Why does the [math]\phi[/math] angle only go out to 80 degrees?
Add FC histogram, Add plot from paper,  start calculating cross -section, Find luminosity of NH3 target used
Phi angle in CM Frame for pions using theta x and phi gamma angles file dst27095 without cut.gif



The rotation matrix, that rotates the coordinate system around y axis by θx angle is given

(pLABπxpLABπypLABπz)=[cosθx0sinθx010sinθx0cosθx](pLABπxpLABπypLABπz)

Now, the x, y and z components of the momentum can be written in terms of the momentums of the rotated system.

pLABπx=cosθx×pLABπx+sinθx×pLABπz

pLABπy=pLABπy

pLABπz=sinθx×pLABπx+cosθx×pLABπz

ϕLABπ=arctg(pLABπycosθx×pLABπx+sinθx×pLABπz)

ϕCMπ=tan1(pLABπycosθx×pLABπx+sinθx×(γCMβCMELABπ+γCMpLABπz))

where θx is the angle between the photon and the electron. The angle can be found using the conservation of momentum and energy.
Conservation of Momentum  :

pe=pe+pγ pe=pepγ
pe2=pe22pepγcosθx+pγ2
cosθx=pe2+pγ2pe22pepγ

Conservation of Energy  :

Ee=Ee+Eγ
(mec2)2+(pec)2=(mec2)2+(pec)2+pγc
pγc=(mec2)2+(pec)2(mec2)2+(pec)2
pγ=(me)2+(pe)2(me)2+(pe)2

The cosθx can be written in the following way
cosθx=pe2+((me)2+(pe)2(me)2+(pe)2)2pe22pe((me)2+(pe)2(me)2+(pe)2)

 angle is in degrees
Phi angle in CM Frame for pions using theta x angle file dst27095 without cuts in degrees.gif


Pion Rates -vs- Paddle for opposite sign Torus fields

using all events in which the first particle (the one which caused the trigger) is defined as an electrons and passes the

above electron cuts.

sc_paddle vs X_bjorken 5.7 GeV Beam Energy
no cuts cuts no cuts cuts
Electrons B > 0 B<0
Electrons sc paddle vs X dst 27095 without cuts.gif Electrons sc paddle vs X dst 27095 with cuts.gif Electrons sc paddle vs X dst 26988 without cuts.gif Electrons sc paddle vs X dst 26988 with cuts.gif
π B > 0 B<0
Pions^- sc paddle vs X dst 27095 without cuts.gif Pions^- sc paddle vs X dst 27095 with cuts.gif Pions^- sc paddle vs X dst 26988 without cuts.gif Pions^- sc paddle vs X dst 26988 with cuts.gif
π+ B > 0 B<0
Pions^plus sc paddle vs X dst 27095 without cuts.gif Pions^plus sc paddle vs X dst 27095 with cuts.gif Pions^plus sc paddle vs X dst 26988 without cuts.gif Pions^plus sc paddle vs X dst 26988 with cuts.gif
sc_paddle vs X_bjorken with cuts 5.7 GeV Beam Energy(number of events=2)
π π
B>0 B<0
Pions^- sc paddle vs X dst 27095 with cuts num events 2.gif Pions^- sc paddle vs X dst 26988 with cuts num events 2.gif
π+ π+
B>0 B<0
Pions^plus sc paddle vs X dst 27095 with cuts num events 2.gif Pions^plus sc paddle vs X dst 26988 with cuts num events 2.gif
sc_paddle vs Momentum 5.7 GeV Beam Energy
There is a curvature problem.  When B > 0 then I expect the high momentum electrons to hit the lower
paddle numbers   (inbending).   I can see this when I look at the B>0 plot for electrons with cuts.  
When B < 0 then the electrons  are bending outwards which makes me expect the the higher momentum
electrons will high the higher numbered paddles.  I do not see this for B>0 with electron cuts.
no cuts cuts no cuts cuts
Electons B > 0 B<0
Electrons sc paddle vs momentum dst 27095 without cuts.gif Electrons sc paddle vs momentum dst 27095 with cuts.gif Electrons sc paddle vs momentum dst 26988 without cuts.gif Electrons sc paddle vs momentum dst 26988 with cuts.gif
π B > 0 B<0
Pions^- sc paddle vs momentum dst 27095 without cuts.gif Pions^- sc paddle vs momentum dst 27095 with cuts.gif
Pions^- sc paddle vs momentum dst 26988 without cuts.gif Pions^- sc paddle vs momentum dst 26988 with cuts.gif
π+ B > 0 B<0
Pions^plus sc paddle vs momentum dst 27095 without cuts.gif Pions^plus sc paddle vs momentum dst 27095 with cuts.gif
Pions^plus sc paddle vs momentum dst 26988 without cuts.gif Pions^plus sc paddle vs momentum dst 26988 with cuts.gif
sc_paddle vs Momentum with cuts 5.7 GeV Beam Energy(number of events=2)
π π
B>0 B<0
Pions^- sc paddle vs momentum dst 27095 with cuts num events 2.gif Pions^- sc paddle vs momentum dst 26988 with cuts num events 2.gif
π+ π+
B>0 B<0
Pions^plus sc paddle vs momentum dst 27095 with cuts num events 2.gif Pions^plus sc paddle vs momentum dst 26988 with cuts num events 2.gif


Used file dst26988_05.B00(Energy=5.7GeV and Torus=-2250)

F cup dst26988 05.gif F cup int dst26988 05.gif Number of pions dst26988 05.gif


Paddle 7 Rates and statistics

The number of events per trigger is measured for the respective DST file above and then the Total number events in the data set is estimated from that.

Xbj π(B>0) π+(B<0)
Total Number Events (103) Number events per 106 triggers Total Number Events (103) Number events per 106 trigger
0.1 5.1 71 24.6 547
0.2 6.9 96 13.7 305
0.3 3.7 51 6.2 137
0.4 3.3 45 2.7 60
0.5 0.9 13 0.99 22
Paddle 17 Rates and statistics
Xbj π(B<0) π+(B>0)
Total Number Events (103) Number events per 106 trigger Total Number Events (103) Number events per 106 trigger
0.1 6.2 137 4.6 64
0.2 3.5 79 4.9 67
0.3 1.7 39 2.6 36
0.4 0.3 7 2.1 29
0.5 0.1 2 0.6 8
Paddle 5 and 8 Rates and statistics for electrons
Xbj e sc_paddle=5 (B>0) e sc_paddle=8 (B<0)
Total Number Events (103) Number events per 106 trigger (103) Total Number Events (103) Number events per 106 trigger (104)
0.1 384.9 5.314 1665.2 3.706
0.2 382.5 5.282 977.8 2.176
0.3 264.9 3.657 567.1 1.262
0.4 159.5 2.202 328.6 0.7313
0.5 99 1.367 218.2 0.4856
Histograms for 5.7 GeV Beam Energy
Electron energy/momentum Electron Theta (θ) Electron Qsqrd Electron X_bjorken
B>0 and sc_paddle=5
Electrons energy momentum dst 27095 with cuts.gif Electrons theta dst 27095 with cuts.gif Electrons Qsqrd dst 27095 with cuts.gif Electrons X bjorken dst 27095 with cuts.gif
B<0 and sc_paddle=8
Electrons energy momentum dst 26988 with cuts.gif Electrons theta dst 26988 with cuts.gif Electrons Qsqrd dst 26988 with cuts.gif Electrons X bjorken dst 26988 with cuts.gif
Normalized X_bjorken for electrons
B>0 and sc_paddle=5 B<0 and sc_paddle=8
X bjorken electrons with cuts sc paddle 5 dst27095.gif X bjorken electrons with cuts sc paddle 8 dst26988.gif

Asymmetries

Systematic Errors

Media:SebastianSysErrIncl.pdf Sebastian's Writeup


[Back to Analysis]