Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 52: | Line 52: | ||
− | <center><math>t \equiv -2p^{*2}(1-\cos{\theta}) | + | <center><math>t \equiv -2p^{*2}(1-\cos{\theta})</math></center> |
− | <center><math>u \equiv -2p^{*2}(1+\cos{\theta}) | + | <center><math>u \equiv -2p^{*2}(1+\cos{\theta})</math></center> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 88: | Line 80: | ||
<center><math>\frac{2s^2}{tu}=\frac{32E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{8E^{*4}}{p^{*4}\sin^2{\theta}}</math></center> | <center><math>\frac{2s^2}{tu}=\frac{32E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{8E^{*4}}{p^{*4}\sin^2{\theta}}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\frac{-2s}{t}=\frac{8E^{*2}}{2p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1-\cos{\theta}\right)}</math></center> | ||