Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 121: | Line 121: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^{*4}}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^{*4}}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+p^{*4}\sin^4{\theta}+4E^{*2}p^{*2}\sin^2{\theta}+ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+p^{*4}\sin^4{\theta}+4E^{*2}p^{*2}\sin^2{\theta}+4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)+2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)+6E^{*4} \right)</math></center> |