Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 121: Line 121:
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{2E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center>
  
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^{*4}}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{2E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^{*4}}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{p^{*4}\sin^4{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}}+\frac{4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center>
  
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+p^{*4}\sin^4{\theta}+4E^{*2}p^{*2}\sin^2{\theta}+2E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)+2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)+6E^{*4} \right)</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+p^{*4}\sin^4{\theta}+4E^{*2}p^{*2}\sin^2{\theta}+4E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)+2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)+6E^{*4} \right)</math></center>
  
  

Revision as of 20:45, 31 December 2018

Navigation_

Differential Cross-Section


Working in the center of mass frame


Determining the scattering amplitude in the center of mass frame







Using the fine structure constant ()



In the center of mass frame the Mandelstam variables are given by:





Simplifying using the relationship