Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 35: | Line 35: | ||
− | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{ | + | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}+\frac{(u^2+s^2)}{t^2}\right )</math></center> |
Line 43: | Line 43: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}++\frac{(u^2+s^2)}{t^2}\right )</math></center> |
Line 68: | Line 68: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{32E^{*4}}{4p^{*2}\sin^2{\frac{\theta}{2}}4p^{*2}\cos^2{\frac{\theta}{2}}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{8E^{*4}}{p^{*4}\sin^2{\theta}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}}+\frac{16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}\sin^4{\frac{\theta}{2}}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}\sin^4{\frac{\theta}{2}}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}\cos^4{\frac{\theta}{2}}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\cot^4{\frac{\theta}{2}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos{2\theta}+3\right)}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |